[PDF]
http://dx.doi.org/10.3952/lithjphys.50101
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 111–120 (2010)
EFFICIENT 4-FOLD
SELF-COMPRESSION OF MILLIJOULE PULSES FROM A 1.5-μm
OPTICAL PARAMETRIC CHIRPED-PULSE AMPLIFIER
S. Ališauskasa, V. Smilgevičiusa,
A.P. Piskarskasa, O.D. Mückeb,
A.J. Verhoefb, A. Pugžlysb,
A. Baltuškab, J. Pociusa,c,
L. Giniūnasc, R. Danieliusc, and
N. Forgetd
aDepartment of Quantum Electronics, Vilnius
University, Saul˙etekio 9, LT-10222 Vilnius, Lithuania
E-mail: skirmantas.alisauskas@ff.vu.lt
bPhotonics Institute, Vienna University of
Technology, Gusshausstr. 27-387, A-1040 Vienna, Austria
cLight Conversion Ltd., P/O Box 1485, Saulėtekio 10,
LT-10223 Vilnius, Lithuania
dFastlite, Bâtiment 403, Ecole Polytechnique,
F-91128 Palaiseau, France
Received 26 October 2009; revised
29 December 2009; accepted 19 March 2010
We discuss a four-stage optical
parametric chirped-pulse amplifier that delivers carrier-envelope
phase-stable 1.5 μm pulses with energies up to 12.5 mJ
before recompression. The system (previously reported in Opt.
Lett. 34, 2498 (2009)) is based on a fusion of femtosecond
diode-pumped solid-state Yb technology and a picosecond 100-mJ
Nd:YAG pump amplifier. Pulses with 62 nm bandwidth are
recompressed to a 74.4 fs duration, which is close to the
transform limit. Here, to show the way towards a TW-peak-power
single-cycle IR source, we perform detailed investigations of
single-filament IR supercontinuum generation via femtosecond
filamentation in noble gases. Depending on the experimental
conditions, two filamentation regimes can be achieved: (i) in the
filamentation regime without plasma-induced pulse
self-compression, we generate 4-mJ 600-nm-wide IR supercontinua of
high spatial quality supporting 8-fs pulse durations, which
corresponds to less than two optical cycles at 1.5 μm;
(ii) in the self-compression regime, we demonstrate
self-compression of 2.2 mJ pulses down to 19.8 fs duration in a
single filament in argon with a 1.5 mJ output energy and 66%
energy throughput. By adapting the experimental conditions,
further energy upscaling of the self-compressed pulses seems
feasible.
Keywords: optical parametric
amplification, filamentation, pulse self-compression, intense
few-cycle infrared pulses
PACS: 42.65.Yj, 42.65.Re
FAZIŠKAI MODULIUOTŲ
MILIDŽAULINĖS ENERGIJOS IMPULSŲ PARAMETRINIS STIPRINTUVAS 1,5 μm
SRITYJE SU IMPULSŲ SAVISPŪDA INERTINĖSE DUJOSE
S. Ališauskasa, V. Smilgevičiusa,
A.P. Piskarskasa, O.D. Mückeb,
A.J. Verhoefb, A. Pugžlysb,
A. Baltuškab, J. Pociusa,c,
L. Giniūnasc, R. Danieliusc,
N. Forgetd
aVilniaus universitetas, Vilnius, Lietuva
bVienos technologijos universiteto Fotonikos
institutas, Viena, Austrija
cUAB „Šviesos konversija“, Vilnius, Lietuva
d Fastlite, Palaiseau, Prancūzija
Pademonstruotas stabilizuotos fazės keturių
pakopų II fazinio sinchronizmo tipo faziškai moduliuotų impulsų
parametrinis stiprintuvas 1,5 μm srityje. Jo impulso
energija prieš kompresiją siekia 12,5 mJ. Parametrinio stiprintuvo
sistema sudaryta iš femtosekundinio diodais kaupinamo Yb:KGV ir
pikosekundinio lempomis kaupinamo 100 mJ Nd:IAG lazerių.
Parametriškai sustiprinti impulsai, kurių spektro plotis
pusaukštyje siekia 62 nm, buvo suspausti iki 74,4 fs, t. y. beveik
iki spektriškai riboto impulso. Norint atskleisti galimybę
generuoti kelių ciklų trukmės TW eilės smailinės galios impulsus
IR srityje, buvo sugeneruotas 4 mJ 600 nm spektro pločio
filamentas, kuris atitiktų 8 fs spektriškai ribotą impulsą. Taip
pat argono dujose pademonstruota 2,2 mJ energijos impulso
filamentacija su savispūda iki 19,8 fs pavienėje gijoje, 66 %
energijos pralaidumu ir siekianti 1,5 mJ energiją išvade.
References / Nuorodos
[1] A. Dubietis, R. Butkus, and A.P. Piskarskas, IEEE J. Sel. Top.
Quant. Electron. 12, 163–172 (2006),
http://dx.doi.org/10.1109/JSTQE.2006.871962
[2] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163–234
(2009),
http://dx.doi.org/10.1103/RevModPhys.81.163
[3] T. Fuji, N. Ishii, C.Y. Teisset, X. Gu, T. Metzger, A. Baltuška,
N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, Opt. Lett. 31,
1103–1105 (2006),
http://dx.doi.org/10.1364/OL.31.001103
[4] X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T.
Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T.
Kobayashi, R. Kienberger, and F. Krausz, Opt. Express 17,
62–69 (2009),
http://dx.doi.org/10.1364/OE.17.000062
[5] C. Vozzi, G. Cirmi, C. Manzoni, E. Benedetti, F. Calegari, G.
Sansone, S. Stagira, O. Svelto, S. De Silvestri, M. Nisoli, and G.
Cerullo, Opt. Express 14, 10109–10116 (2006),
http://dx.doi.org/10.1364/OE.14.010109
[6] C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G.
Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, Opt. Lett. 32,
2957–2959 (2007),
http://dx.doi.org/10.1364/OL.32.002957
[7] J. Moses, S.-W. Huang, K.-H. Hong, O.D. Mücke, E.L.
Falcão-Filho, A. Benedick, F.Ö. Ilday, A. Dergachev, J.A. Bolger,
B.J. Eggleton, and F.X. Kärtner, Opt. Lett. 34, 1639–1641
(2009),
http://dx.doi.org/10.1364/OL.34.001639
[8] E.J. Takahashi, T. Kanai, Y. Nabekawa, and K. Midorikawa, Appl.
Phys. Lett. 93, 041111-1–3 (2008),
http://dx.doi.org/10.1063/1.2960352
[9] E.J. Takahashi, T. Kanai, K.L. Ishikawa, Y. Nabekawa, and K.
Midorikawa, Phys. Rev. Lett. 101, 253901-1–4 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.253901
[10] O.D. Mücke, D. Sidorov, P. Dombi, A. Pugžlys, A. Baltuška, S.
Ališauskas, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius,
and N. Forget, Opt. Lett. 34, 118–120 (2009),
http://dx.doi.org/10.1364/OL.34.000118
[11] O.D. Mücke, S. Ališauskas, A.J. Verhoef, A. Pugžlys, A.
Baltuška, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, and
N. Forget, Opt. Lett. 34, 2498–2500 (2009),
http://dx.doi.org/10.1364/OL.34.002498
[12] C.I. Blaga, F. Catoire, P. Colosimo, G.G. Paulus, H.G. Muller,
P. Agostini, and L.F. DiMauro, Nature Phys. 5, 335–338
(2009),
http://dx.doi.org/10.1038/nphys1228
[13] J. Tate, T. Auguste, H.G. Muller, P. Salières, P. Agostini, and
L.F. DiMauro, Phys. Rev. Lett. 98, 013901-1–4 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.013901
[14] P. Colosimo, G. Doumy, C.I. Blaga, J. Wheeler, C. Hauri, F.
Catoire, J. Tate, R. Chirla, A.M. March, G.G. Paulus, H.G. Muller,
P. Agostini, and L.F. DiMauro, Nature Phys. 4, 386–389
(2008),
http://dx.doi.org/10.1038/nphys914
[15] G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and
L.F. DiMauro, Phys. Rev. Lett. 102, 093002-1–4 (2009),
http://dx.doi.org/10.1103/PhysRevLett.102.093002
[16] P. Agostini and L.F. DiMauro, Contemp. Phys. 49,
179–197 (2008),
http://dx.doi.org/10.1080/00107510802221630
[17] B. Sheehy, J.D.D. Martin, L.F. DiMauro, P. Agostini, K.J.
Schafer, M.B. Gaarde, and K.C. Kulander, Phys. Rev. Lett. 83,
5270–5273 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.5270
[18] B. Shan and Z. Chang, Phys. Rev. A 65, 011804(R)-1–4
(2001),
http://dx.doi.org/10.1103/PhysRevA.65.011804
[19] A. Gordon and F.X. Kärtner, Opt. Express 13, 2941–2947
(2005),
http://dx.doi.org/10.1364/OPEX.13.002941
[20] T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P.
Sidorenko, O. Cohen, I.P. Christov, M.M. Murnane, and H.C. Kapteyn,
Proc. Natl. Acad. Sci. USA 106, 10516–10521 (2009),
http://dx.doi.org/10.1073/pnas.0903748106
[21] K. Schiessl, K.L. Ishikawa, E. Persson, and J. Burgdörfer,
Phys. Rev. Lett. 99, 253903-1–4 (2007),
http://dx.doi.org/10.1103/PhysRevLett.99.253903
[22] A.D. Shiner, C. Trallero-Herrero, N. Kajumba, H.-C. Bandulet,
D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P.B. Corkum, and
D.M. Villeneuve, Phys. Rev. Lett. 103, 073902-1–4 (2009),
http://dx.doi.org/10.1103/PhysRevLett.103.073902
[23] M.V. Frolov, N.L. Manakov, T.S. Sarantseva, M.Y. Emelin, M.Y.
Ryabikin, and A.F. Starace, Phys. Rev. Lett. 102, 243901-1–4
(2009),
http://dx.doi.org/10.1103/PhysRevLett.102.243901
[24] T. Popmintchev, M.-C. Chen, O. Cohen, M.E. Grisham, J.J. Rocca,
M.M. Murnane, and H.C. Kapteyn, Opt. Lett. 33, 2128–2130
(2008),
http://dx.doi.org/10.1364/OL.33.002128
[25] V.S. Yakovlev, M. Ivanov, and F. Krausz, Opt. Express 15,
15351–15364 (2007),
http://dx.doi.org/10.1364/OE.15.015351
[26] E.L. Falcão-Filho, V.M. Gkortsas, A. Gordon, and F.X. Kärtner,
Opt. Express 17, 11217–11229 (2009),
http://dx.doi.org/10.1364/OE.17.011217
[27] A.L. Cavalieri, N. Müller, T. Uphues, V.S. Yakovlev, A.
Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S.
Hendel, M. Drescher, U. Kleineberg, P.M. Echenique, R. Kienberger,
F. Krausz, and U. Heinzmann, Nature 449, 1029–1032 (2007),
http://dx.doi.org/10.1038/nature06229
[28] L. Miaja-Avila, G. Saathoff, S. Mathias, J. Yin, C.
La-o-vorakiat, M. Bauer, M. Aeschlimann, M.M. Murnane, and H.C.
Kapteyn, Phys. Rev. Lett. 101, 046101-1–4 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.046101
[29] J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Streli, P.
Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz,
Nature 433, 596 (2005),
http://dx.doi.org/10.1038/433596a
[30] M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68,
2793–2795 (1996),
http://dx.doi.org/10.1063/1.116609
[31] M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz,
C. Spielmann, S. Sartania, and F. Krausz, Opt. Lett. 22,
522–524 (1997),
http://dx.doi.org/10.1364/OL.22.000522
[32] C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A.
Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79,
673–677 (2004),
http://dx.doi.org/10.1007/s00340-004-1650-z
[33] C.P. Hauri, R.B. Lopez-Martens, C.I. Blaga, K.D. Schultz, J.
Cryan, R. Chirla, P. Colosimo, G. Doumy, A.M. March, C. Roedig, E.
Sistrunk, J. Tate, J. Wheeler, L.F. DiMauro, and E.P. Power, Opt.
Lett. 32, 868–870 (2007),
http://dx.doi.org/10.1364/OL.32.000868
[34] A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl.
Phys. Lett. 86, 111116-1–3 (2005),
http://dx.doi.org/10.1063/1.1883706
[35] G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, Opt. Lett. 31,
274–276 (2006),
http://dx.doi.org/10.1364/OL.31.000274
[36] L. Bergé, Opt. Express 16, 21529–21543 (2008),
http://dx.doi.org/10.1364/OE.16.021529
[37] D. Kraemer, R. Hua, M.L. Cowan, K. Franjic, and R.J.D. Miller,
Opt. Lett. 31, 981–983 (2006),
http://dx.doi.org/10.1364/OL.31.000981
[38] D. Kraemer, M.L. Cowan, R. Hua, K. Franjic, and R.J.D. Miller,
J. Opt. Soc. Am. B 24, 813–818 (2007),
http://dx.doi.org/10.1364/JOSAB.24.000813
[39] A. Varanavičius, A. Dubietis, A. Beržanskis, R. Danielius, and
A. Piskarskas, Opt. Lett. 22, 1603–1605 (1997),
http://dx.doi.org/10.1364/OL.22.001603
[40] M.P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, Opt.
Lett. 30, 923–925 (2005),
http://dx.doi.org/10.1364/OL.30.000923
[41] F. Verluise, V. Laude, J.-P. Huignard, P. Tournois, and A.
Migus, J. Opt. Soc. Am. B 17, 138–145 (2000),
http://dx.doi.org/10.1364/JOSAB.17.000138
[42] A. Trisorio and C.P. Hauri, Opt. Lett. 32, 1650–1652
(2007),
http://dx.doi.org/10.1364/OL.32.001650
[43] O. Varela, A. Zaïr, J. San Román, B. Alonso, I.J. Sola, C.
Prieto, and L. Roso, Opt. Express 17, 3630–3639 (2009),
http://dx.doi.org/10.1364/OE.17.003630
[44] D.N. Fittinghoff, J.L. Bowie, J.N. Sweetser, R.T. Jennings,
M.A. Krumbügel, K.W. DeLong, R. Trebino, and I.A. Walmsley, Opt.
Lett. 21, 884–886 (1996),
http://dx.doi.org/10.1364/OL.21.000884
[45] J. Paye, IEEE J. Quantum Electron. 28, 2262–2273
(1992),
http://dx.doi.org/10.1109/3.159533