[PDF]    http://dx.doi.org/10.3952/lithjphys.50102

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 141–145 (2010)


LED-BASED LIGHT SOURCES FOR DECONTAMINATION OF FOOD: MODELLING PHOTOSENSITIZATION-BASED INACTIVATION OF PATHOGENIC BACTERIA
Z. Vaitonis and Ž. Lukšienė
Institute of Applied Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: zivile.luksiene@tmi.vu.lt

Received 18 September 2009; revised 22 January 2010; accepted 19 March 2010

The aim of this study was to develop modern light technology (photosensitization) for non-thermal decontamination of different surfaces including food. For this purpose a light emitting diode (LED) based light source was constructed. The high-power LEDs (mfr Seoul Semiconductors) with peak wavelength at 400 nm were mounted within the prototype of light source. Antimicrobial action of aminolevulinic acid-based photosensitization was evaluated using three pathogenic bacteria (Bacillus, Listeria, and Salmonella) usually distributed on the surface of food. Pathogen inactivation by almost 6–7 orders of magnitude was achieved by ALA-based photosensitization. We suggest mathematical description for kinetics of the bacteria number within inactivation process, which is in good agreement with experimental data. Theoretical analysis of the experimental data helps in revealing the optimal conditions for food decontamination process.
Keywords: LED, photosensitization, antimicrobial action
PACS: 85.60.Jb, 87.50.W-, 83.80.Ya


ŠVIESTUKAI PRIEŠ MAISTO UŽKRATUS: BAKTERIJŲ NAIKINIMO ŠVIESA MODELIAVIMAS
Z. Vaitonis, Ž. Lukšienė
Vilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva

Siekiama sukurti šiuolaikišką šviesos technologiją (fotosensibilizaciją), kurią galima panaudoti neterminiam maisto apdorojimui. Šiam darbui buvo pagamintas prototipas su puslaidininkiniais didelės galios šviesos diodais, kurių spinduliuojamos bangos ilgis yra 400 nm. Tyrimas atliktas naudojant tris bakterijų rūšis: Bacillus cereus, Listeria monocytogenes, Salmonella enterica. Naudojant šį kietakūnį šviesos šaltinį, pasiekta beveik 100 % bakterijų žūtis. Eksperimentų rezultatų analizei pasiūlėme matematinį bakterijų skaičiaus kinetikos aprašymą, kuris galėtų padėti optimizuoti dezinfekcijos procesą.


References / Nuorodos


[1] T.I. Mbata, Poultry meat pathogens and its control, Internet J. Food Safety 7, 20–28 (2005),
http://www.internetjfs.org/articles/ijfsv7-4.pdf
[2] Outbreak of listeriosis – Northeastern United States, 2002, Morb. Mortal. Wkly. Rep. 51, 950–951 (Centers for Disease Control and Prevention, 2002),
http://www.cdc.gov/mmwr/PDF/wk/mm5142.pdf
[3] T. Koutchma, UV light for processing foods, Ozone Sci. Eng. 30, 93–98 (2008),
http://dx.doi.org/10.1080/01919510701816346
[4] N. Elmnasser, S. Guillou, F. Leroi, N. Orange, A. Bakhrouf, and M. Federighi, Pulsed-light system as a novel food decontamination technology: a review, Can. J. Microbiol. 53, 813–821 (2007),
http://dx.doi.org/10.1139/W07-042
[5] Z. Luksiene, V. Gudelis, I. Buchovec, and J. Raudeliuniene, Advanced high-power pulsed light device to decontaminate food from pathogens: effects on Salmonella typhimurium viability in vitro, J. Appl. Microbiol. 103, 1545–1552 (2007),
http://dx.doi.org/10.1111/j.1365-2672.2007.03403.x
[6] F. Fine and P. Gervais, Efficiency of pulsed UV light for microbial decontamination of food powders, J. Food Protect. 67, 787–792 (2004),
http://www.ingentaconnect.com/content/iafp/jfp/2004/00000067/00000004/art00022
[7] B.R. Yaun, S.S. Sumner, J.D. Eifert, and J.E. Marcy, Inhibition of pathogens on fresh produce by ultraviolet energy, Int. J. Food Microbiol. 90, 1–8 (2004),
http://dx.doi.org/10.1016/S0168-1605%2803%2900158-2
[8] Ž. Lukšienė, New approach to inactivation of harmful and pathogenic microorganisms by photosensitization, Food Technol. Biotechnol. 43, 411–418 (2005),
http://www.ftb.com.hr/43-411.pdf
[9] Ž. Lukšienė, H. Danilčenko, Z. Tarasevičienė, Ž. Anusevičius, A. Marozienė, and H. Nivinskas, New approach to the fungal decontamination of wheat used for wheat sprouts: Effects of aminolevulinic acid, Int. J. Food Microbiol. 116, 153–158 (2007),
http://dx.doi.org/10.1016/j.ijfoodmicro.2006.12.040
[10] Z. Luksiene, I. Buchovec, and E. Paskeviciute, Inactivation of food pathogen Bacillus cereus by photosensitization in vitro and on the surface of packaging material, J. Appl. Microbiol. 107, 2037–2046 (2009),
http://dx.doi.org/10.1111/j.1365-2672.2009.04383.x
[11] Y. Le Marc, I. Buchovec, S.M. George, J. Baranyi, and Z. Luksiene, Modelling the photosensitization-based inactivation of Bacillus cereus, J. Appl. Microbiol. 107, 1006–1011 (2009),
http://dx.doi.org/10.1111/j.1365-2672.2009.04275.x
[12] R. Vitro, D. Sanz, I. Álvarez, S. Condón, and J. Raso, Application of the Weibull model to describe inactivation of Listeria monocytogenes and Escherichia coli by citric and lactic acid at different temperatures, J. Sci. Food Agr. 86, 865–870 (2006),
http://dx.doi.org/10.1002/jsfa.2424
[13] R.J.W. Lambert, A model for the thermal inactivation of micro-organisms, J. Appl. Microbiol. 95, 500–507 (2003),
http://dx.doi.org/10.1046/j.1365-2672.2003.02009.x
[14] O. Erkmen, Mathematical modeling of Saccharomyces cerevisiae inactivation under high-pressure carbon dioxide, Nahrung / Food 47, 176–180 (2003),
http://dx.doi.org/10.1002/food.200390041
[15] D.L. Holcomb, M.A. Smith, G.O. Ware, Y.-C. Hung, R.E. Brackett, and M.P. Doyle, Comparison of six dose-response models for use with food-borne pathogens, Risk Anal. 19, 1091–1099 (1999),
http://dx.doi.org/10.1023/A:1007078527037
[16] G. Wirtanen, M. Aalto, P. Härkönen, P. Gilbert, and T. Mattila-Sandholm, Efficacy testing of commercial disinfectants against foodborne pathogenic and spoilage microbes in biofilm-constructs, Eur. Food Res. Technol. 213, 409–411 (2001),
http://dx.doi.org/10.1007/s002170100375
[17] G. Wirtanen and S. Salo, Disinfection in food processing – efficacy testing of disinfectants, Rev. Environ. Sci. Biotechnol. 2, 293–306 (2003),
http://dx.doi.org/10.1007/s002170100375
[18] Y. Nitzan and H. Ashkenazi, Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths, Curr. Microbiol. 42, 408–414 (2001),
http://dx.doi.org/10.1007/s002840010238