[PDF]
http://dx.doi.org/10.3952/lithjphys.50102
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 141–145 (2010)
LED-BASED LIGHT SOURCES FOR
DECONTAMINATION OF FOOD: MODELLING PHOTOSENSITIZATION-BASED
INACTIVATION OF PATHOGENIC BACTERIA
Z. Vaitonis and Ž. Lukšienė
Institute of Applied Research, Vilnius University, Saulėtekio
10, LT-10223 Vilnius, Lithuania
E-mail: zivile.luksiene@tmi.vu.lt
Received 18 September 2009; revised
22 January 2010; accepted 19 March 2010
The aim of this study was to
develop modern light technology (photosensitization) for
non-thermal decontamination of different surfaces including food.
For this purpose a light emitting diode (LED) based light source
was constructed. The high-power LEDs (mfr Seoul Semiconductors)
with peak wavelength at 400 nm were mounted within the prototype
of light source. Antimicrobial action of aminolevulinic acid-based
photosensitization was evaluated using three pathogenic bacteria (Bacillus,
Listeria, and Salmonella) usually distributed on
the surface of food. Pathogen inactivation by almost 6–7 orders of
magnitude was achieved by ALA-based photosensitization. We suggest
mathematical description for kinetics of the bacteria number
within inactivation process, which is in good agreement with
experimental data. Theoretical analysis of the experimental data
helps in revealing the optimal conditions for food decontamination
process.
Keywords: LED, photosensitization,
antimicrobial action
PACS: 85.60.Jb, 87.50.W-, 83.80.Ya
ŠVIESTUKAI PRIEŠ MAISTO
UŽKRATUS: BAKTERIJŲ NAIKINIMO ŠVIESA MODELIAVIMAS
Z. Vaitonis, Ž. Lukšienė
Vilniaus universiteto Taikomųjų mokslų institutas, Vilnius,
Lietuva
Siekiama sukurti šiuolaikišką šviesos
technologiją (fotosensibilizaciją), kurią galima panaudoti
neterminiam maisto apdorojimui. Šiam darbui buvo pagamintas
prototipas su puslaidininkiniais didelės galios šviesos diodais,
kurių spinduliuojamos bangos ilgis yra 400 nm. Tyrimas atliktas
naudojant tris bakterijų rūšis: Bacillus cereus, Listeria
monocytogenes, Salmonella enterica. Naudojant šį
kietakūnį šviesos šaltinį, pasiekta beveik 100 % bakterijų žūtis.
Eksperimentų rezultatų analizei pasiūlėme matematinį bakterijų
skaičiaus kinetikos aprašymą, kuris galėtų padėti optimizuoti
dezinfekcijos procesą.
References / Nuorodos
[1] T.I. Mbata, Poultry meat pathogens and its control, Internet J.
Food Safety 7, 20–28 (2005),
http://www.internetjfs.org/articles/ijfsv7-4.pdf
[2] Outbreak of listeriosis – Northeastern United States, 2002,
Morb. Mortal. Wkly. Rep. 51, 950–951 (Centers for Disease
Control and Prevention, 2002),
http://www.cdc.gov/mmwr/PDF/wk/mm5142.pdf
[3] T. Koutchma, UV light for processing foods, Ozone Sci. Eng. 30,
93–98 (2008),
http://dx.doi.org/10.1080/01919510701816346
[4] N. Elmnasser, S. Guillou, F. Leroi, N. Orange, A. Bakhrouf, and
M. Federighi, Pulsed-light system as a novel food decontamination
technology: a review, Can. J. Microbiol. 53, 813–821 (2007),
http://dx.doi.org/10.1139/W07-042
[5] Z. Luksiene, V. Gudelis, I. Buchovec, and J. Raudeliuniene,
Advanced high-power pulsed light device to decontaminate food from
pathogens: effects on Salmonella typhimurium viability in
vitro, J. Appl. Microbiol. 103, 1545–1552 (2007),
http://dx.doi.org/10.1111/j.1365-2672.2007.03403.x
[6] F. Fine and P. Gervais, Efficiency of pulsed UV light for
microbial decontamination of food powders, J. Food Protect. 67,
787–792 (2004),
http://www.ingentaconnect.com/content/iafp/jfp/2004/00000067/00000004/art00022
[7] B.R. Yaun, S.S. Sumner, J.D. Eifert, and J.E. Marcy, Inhibition
of pathogens on fresh produce by ultraviolet energy, Int. J. Food
Microbiol. 90, 1–8 (2004),
http://dx.doi.org/10.1016/S0168-1605%2803%2900158-2
[8] Ž. Lukšienė, New approach to inactivation of harmful and
pathogenic microorganisms by photosensitization, Food Technol.
Biotechnol. 43, 411–418 (2005),
http://www.ftb.com.hr/43-411.pdf
[9] Ž. Lukšienė, H. Danilčenko, Z. Tarasevičienė, Ž. Anusevičius, A.
Marozienė, and H. Nivinskas, New approach to the fungal
decontamination of wheat used for wheat sprouts: Effects of
aminolevulinic acid, Int. J. Food Microbiol. 116, 153–158
(2007),
http://dx.doi.org/10.1016/j.ijfoodmicro.2006.12.040
[10] Z. Luksiene, I. Buchovec, and E. Paskeviciute, Inactivation of
food pathogen Bacillus cereus by photosensitization in
vitro and on the surface of packaging material, J. Appl.
Microbiol. 107, 2037–2046 (2009),
http://dx.doi.org/10.1111/j.1365-2672.2009.04383.x
[11] Y. Le Marc, I. Buchovec, S.M. George, J. Baranyi, and Z.
Luksiene, Modelling the photosensitization-based inactivation of Bacillus
cereus, J. Appl. Microbiol. 107, 1006–1011 (2009),
http://dx.doi.org/10.1111/j.1365-2672.2009.04275.x
[12] R. Vitro, D. Sanz, I. Álvarez, S. Condón, and J. Raso,
Application of the Weibull model to describe inactivation of Listeria
monocytogenes and Escherichia coli by citric and
lactic acid at different temperatures, J. Sci. Food Agr. 86,
865–870 (2006),
http://dx.doi.org/10.1002/jsfa.2424
[13] R.J.W. Lambert, A model for the thermal inactivation of
micro-organisms, J. Appl. Microbiol. 95, 500–507 (2003),
http://dx.doi.org/10.1046/j.1365-2672.2003.02009.x
[14] O. Erkmen, Mathematical modeling of Saccharomyces
cerevisiae inactivation under high-pressure carbon dioxide,
Nahrung / Food 47, 176–180 (2003),
http://dx.doi.org/10.1002/food.200390041
[15] D.L. Holcomb, M.A. Smith, G.O. Ware, Y.-C. Hung, R.E. Brackett,
and M.P. Doyle, Comparison of six dose-response models for use with
food-borne pathogens, Risk Anal. 19, 1091–1099 (1999),
http://dx.doi.org/10.1023/A:1007078527037
[16] G. Wirtanen, M. Aalto, P. Härkönen, P. Gilbert, and T.
Mattila-Sandholm, Efficacy testing of commercial disinfectants
against foodborne pathogenic and spoilage microbes in
biofilm-constructs, Eur. Food Res. Technol. 213, 409–411
(2001),
http://dx.doi.org/10.1007/s002170100375
[17] G. Wirtanen and S. Salo, Disinfection in food processing –
efficacy testing of disinfectants, Rev. Environ. Sci. Biotechnol. 2,
293–306 (2003),
http://dx.doi.org/10.1007/s002170100375
[18] Y. Nitzan and H. Ashkenazi, Photoinactivation of Acinetobacter
baumannii and Escherichia coli B by a cationic
hydrophilic porphyrin at various light wavelengths, Curr. Microbiol.
42, 408–414 (2001),
http://dx.doi.org/10.1007/s002840010238