[PDF]    http://dx.doi.org/10.3952/lithjphys.50105

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 69–74 (2010)


DIRECTLY RECORDING DIFFRACTION PHENOMENA IN THE TIME DOMAIN
M. Lõhmusa, P. Bowlanb, R. Trebinob, H. Valtna-Luknera, P. Piksarva, and P. Saaria
aInstitute of Physics, University of Tartu, 142 Riia St, Tartu, 51014 Estonia
E-mail: madisl@ut.ee
bSchool of Physics, Georgia Institute of Technology, 837 State St NW, Atlanta, GA 30332, USA

Received 15 October 2009; accepted 19 March 2010

The wave-field produced by a 30 fs duration Ti:sapphire oscillator pulse behind a circular aperture and circular opaque disk is measured using the ultrashort-laser-pulse measurement technique, scanning SEA TADPOLE. The high spatial and temporal resolution of the measuring technique enables us to fully image the diffracted field behind the apertures and record the interference pattern produced by the so-called boundary diffraction wave pulses.
Keywords: diffraction, interference
PACS: 42.25.Fx, 42.25.Gy, 42.25.Hz


TIESIOGINIS DIFRAKCIJOS REIŠKINIŲ REGISTRAVIMAS LAIKINĖJE SRITYJE
M. Lõhmusa, P. Bowlanb, R. Trebinob, H. Valtna-Luknera, P. Piksarva, P. Saaria
aTartu universiteto fizikos institutas, Tartu, Estija
bDžordžijos technologijos universiteto Fizikos mokykla, Atlanta, JAV

Bangų laukas, sukurtas 30 fs trukmės Ti:safyro osciliatoriaus impulsais už apskritos apertūros ir apskrito neperšviečiamo disko, matuojamas ultratrumpųjų lazerio impulsų metodu, kuris angliškai vadinamas skenuojančiuoju SEA TADPOLE. Taikyto metodo didelė erdvinė ir laikinė skyra leidžia atvaizduoti visą už apertūrų difragavusį lauką ir užfiksuoti interferencinį vaizdą, susidarantį dėl vadinamųjų kraštinių difragavusių bangų impulsų.


References / Nuorodos


[1] Z.L. Horváth and Zs. Bor, Diffraction of short pulses with boundary diffraction wave theory, Phys. Rev. E 63(2), 026601-1–11 (2001),
http://dx.doi.org/10.1103/PhysRevE.63.026601
[2] Z.L. Horváth, J. Klebniczki, G. Kurdi, and A.P. Kovács, Experimental investigation of the boundary wave pulse, Opt. Commun. 239(4–6), 243–250 (2004),
http://dx.doi.org/10.1016/j.optcom.2004.05.045
[3] P. Bowlan, P. Gabolde, M.A. Coughlan, R. Trebino, and R.J. Levis, Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution, J. Opt. Soc. Am. B 25(6), A81–A91 (2008),
http://dx.doi.org/10.1364/JOSAB.25.000A81
[4] K. Miyamoto and E. Wolf, Generalization of the Maggi–Rubinowicz theory of the boundary diffraction wave – Part II, J. Opt. Soc. Am. 52(6), 626–637 (1962),
http://dx.doi.org/10.1364/JOSA.52.000626
[5] Z.L. Horváth and Zs. Bor, Reshaping of femtosecond pulses by the Gouy phase shift, Phys. Rev. E 60(2), 2337–2346 (1999),
http://dx.doi.org/10.1103/PhysRevE.60.2337
[6] P. Bowlan, P. Gabolde, and R. Trebino, Directly measuring the spatio-temporal electric field of focusing ultrashort pulses, Opt. Express 15(16), 10219–10230 (2007),
http://dx.doi.org/10.1364/OE.15.010219
[7] P. Saari and K. Reivelt, Evidence of X-shaped propagation-invariant localized light waves, Phys. Rev. Lett. 79(21), 4135–4138 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.4135
[8] P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, P. Saari, and R. Trebino, Measuring the spatiotemporal field of ultrashort Bessel-X pulses, Opt. Lett. 34(15), 2276–2278 (2009),
http://dx.doi.org/10.1364/OL.34.002276
[9] P. Saari and K. Reivelt, Generation and classification of localized waves by Lorentz transformations in Fourier space, Phys. Rev. E 69(3), 036612-1–12 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.036612
[10] M. Clerici, D. Faccio, A. Lotti, E. Rubino, O. Jedrkiewicz, J. Biegert, and P. Di Trapani, Finite-energy, accelerating Bessel pulses, Opt. Express 16(24), 19807–19811 (2008),
http://dx.doi.org/10.1364/OE.16.019807
[11] H. Valtna-Lukner, P. Bowlan, M. Lõhmus, P. Piksarv, R. Trebino, and P. Saari, Direct spatiotemporal measurements of accelerating ultrashort Bessel-type light bullets, Opt. Express 17(17), 14948–14955 (2009),
http://dx.doi.org/10.1364/OE.17.014948