[PDF]
http://dx.doi.org/10.3952/lithjphys.50105
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 69–74 (2010)
DIRECTLY RECORDING DIFFRACTION
PHENOMENA IN THE TIME DOMAIN
M. Lõhmusa, P. Bowlanb, R. Trebinob,
H. Valtna-Luknera, P. Piksarva, and P. Saaria
aInstitute of Physics, University of Tartu, 142 Riia
St, Tartu, 51014 Estonia
E-mail: madisl@ut.ee
bSchool of Physics, Georgia Institute of Technology,
837 State St NW, Atlanta, GA 30332, USA
Received 15 October 2009; accepted
19 March 2010
The wave-field produced by a 30
fs duration Ti:sapphire oscillator pulse behind a circular
aperture and circular opaque disk is measured using the
ultrashort-laser-pulse measurement technique, scanning SEA
TADPOLE. The high spatial and temporal resolution of the measuring
technique enables us to fully image the diffracted field behind
the apertures and record the interference pattern produced by the
so-called boundary diffraction wave pulses.
Keywords: diffraction, interference
PACS: 42.25.Fx, 42.25.Gy, 42.25.Hz
TIESIOGINIS DIFRAKCIJOS
REIŠKINIŲ REGISTRAVIMAS LAIKINĖJE SRITYJE
M. Lõhmusa, P. Bowlanb, R. Trebinob,
H. Valtna-Luknera, P. Piksarva, P. Saaria
aTartu universiteto fizikos institutas, Tartu,
Estija
bDžordžijos technologijos universiteto Fizikos
mokykla, Atlanta, JAV
Bangų laukas, sukurtas 30 fs trukmės Ti:safyro
osciliatoriaus impulsais už apskritos apertūros ir apskrito
neperšviečiamo disko, matuojamas ultratrumpųjų lazerio impulsų
metodu, kuris angliškai vadinamas skenuojančiuoju SEA TADPOLE.
Taikyto metodo didelė erdvinė ir laikinė skyra leidžia atvaizduoti
visą už apertūrų difragavusį lauką ir užfiksuoti interferencinį
vaizdą, susidarantį dėl vadinamųjų kraštinių difragavusių bangų
impulsų.
References / Nuorodos
[1] Z.L. Horváth and Zs. Bor, Diffraction of short pulses with
boundary diffraction wave theory, Phys. Rev. E 63(2),
026601-1–11 (2001),
http://dx.doi.org/10.1103/PhysRevE.63.026601
[2] Z.L. Horváth, J. Klebniczki, G. Kurdi, and A.P. Kovács,
Experimental investigation of the boundary wave pulse, Opt. Commun.
239(4–6), 243–250 (2004),
http://dx.doi.org/10.1016/j.optcom.2004.05.045
[3] P. Bowlan, P. Gabolde, M.A. Coughlan, R. Trebino, and R.J.
Levis, Measuring the spatiotemporal electric field of ultrashort
pulses with high spatial and spectral resolution, J. Opt. Soc. Am. B
25(6), A81–A91 (2008),
http://dx.doi.org/10.1364/JOSAB.25.000A81
[4] K. Miyamoto and E. Wolf, Generalization of the Maggi–Rubinowicz
theory of the boundary diffraction wave – Part II, J. Opt. Soc. Am.
52(6), 626–637 (1962),
http://dx.doi.org/10.1364/JOSA.52.000626
[5] Z.L. Horváth and Zs. Bor, Reshaping of femtosecond pulses by the
Gouy phase shift, Phys. Rev. E 60(2), 2337–2346 (1999),
http://dx.doi.org/10.1103/PhysRevE.60.2337
[6] P. Bowlan, P. Gabolde, and R. Trebino, Directly measuring the
spatio-temporal electric field of focusing ultrashort pulses, Opt.
Express 15(16), 10219–10230 (2007),
http://dx.doi.org/10.1364/OE.15.010219
[7] P. Saari and K. Reivelt, Evidence of X-shaped
propagation-invariant localized light waves, Phys. Rev. Lett. 79(21),
4135–4138 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.4135
[8] P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, P. Saari,
and R. Trebino, Measuring the spatiotemporal field of ultrashort
Bessel-X pulses, Opt. Lett. 34(15), 2276–2278 (2009),
http://dx.doi.org/10.1364/OL.34.002276
[9] P. Saari and K. Reivelt, Generation and classification of
localized waves by Lorentz transformations in Fourier space, Phys.
Rev. E 69(3), 036612-1–12 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.036612
[10] M. Clerici, D. Faccio, A. Lotti, E. Rubino, O. Jedrkiewicz, J.
Biegert, and P. Di Trapani, Finite-energy, accelerating Bessel
pulses, Opt. Express 16(24), 19807–19811 (2008),
http://dx.doi.org/10.1364/OE.16.019807
[11] H. Valtna-Lukner, P. Bowlan, M. Lõhmus, P. Piksarv, R. Trebino,
and P. Saari, Direct spatiotemporal measurements of accelerating
ultrashort Bessel-type light bullets, Opt. Express 17(17),
14948–14955 (2009),
http://dx.doi.org/10.1364/OE.17.014948