[PDF]
http://dx.doi.org/10.3952/lithjphys.50108
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 121–127 (2010)
TIME-AND-SPACE-DOMAIN STUDY OF
DIFFRACTING AND NON-DIFFRACTING LIGHT PULSES
P. Saaria, P. Bowlanb, H. Valtna-Luknera,
M. Lõhmusa, P. Piksarva, and R. Trebinob
aInstitute of Physics, University of Tartu, 142 Riia
St, Tartu, 51014 Estonia
E-mail: peeter.saari@ut.ee
bSchool of Physics, Georgia Institute of Technology,
837 State St NW, Atlanta, GA 30332, USA
Received 27 October 2009; revised
17 February 2009; accepted 19 March 2010
We present an overview of our very
recent results on the evolution of ultrashort pulses after
propagating through various optical elements. Direct
spatiotemporal measurements of the electric field were made using
the technique SEA TADPOLE. Our SEA TADPOLE device can resolve
spatial features as small as 5 μm and temporal features
as small as 5 fs. The experimental results are verified by
theoretical calculations. The superluminality of pulses with
Bessel-function-like radial profiles is discussed.
Keywords: Bessel beam, boundary
diffraction wave, Bessel-X pulse, superluminal propagation, Arago
spot
PACS: 42.25.Fx, 42.25.Gy, 42.65.Re, 42.79.Bh
DIFRAGUOJANTYS IR
NEDIFRAGUOJANTYS ŠVIESOS IMPULSAI ERDVĖJE IR LAIKE
P. Saaria, P. Bowlanb, H. Valtna-Luknera,
M. Lõhmusa, P. Piksarva, R. Trebinob
aTartu universiteto fizikos institutas, Tartu,
Estija
bDžordžijos technologijos universiteto Fizikos
mokykla, Atlanta, JAV
Pateikiame savo naujausių rezultatų apžvalgą
apie ultratrumpųjų impulsų, perėjusių įvairius optinius elementus,
evoliuciją. Elektrinis laukas tiesiogiai matuotas erdvėje ir laike
metodu, angliškoje literatūroje vadinamu SEA TADPOLE. Mūsų SEA
TADPOLE prietaisas registruoja net 5 μm smulkumo ir vos
5 fs trunkančius pokyčius. Eksperimentiniai rezultatai
patvirtinti teoriniais skaičiavimais. Aptartas impulsų, turinčių
Beselio funkcijos pavidalo radialųjį pjūvį, virššviesinis pobūdis.
References / Nuorodos
[1] J. Durnin, J.J. Miceli Jr, and J.H. Eberly, Phys. Rev. Lett. 58,
1499 (1987),
http://dx.doi.org/10.1103/PhysRevLett.58.1499
[2] D. McGloin and K. Dholakia, Contemp. Phys. 46, 15
(2005),
http://dx.doi.org/10.1080/0010751042000275259
[3] J.N. Brittingham, J. Appl. Phys. 54, 1179 (1983),
http://dx.doi.org/10.1063/1.332196
[4] R.W. Ziolkowski, Phys. Rev. A 39, 2005 (1988),
http://dx.doi.org/10.1103/PhysRevA.39.2005
[5] J.-Y. Lu and J.F. Greenleaf, IEEE Trans. Ultrason.
Ferroelectrics Freq. Control 39, 19 (1992),
http://dx.doi.org/10.1109/58.166806
[6] I. Besieris, M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros,
Prog. Electromagn. Res. 19, 1 (1998),
http://dx.doi.org/10.2528/PIER97072900
[7] J. Salo, J. Fagerholm, A.T. Friberg, and M.M. Salomaa, Phys.
Rev. E 62, 4261 (2000),
http://dx.doi.org/10.1103/PhysRevE.62.4261
[8] P. Saari and K. Reivelt, Phys. Rev. E 69, 036612 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.036612
[9] E. Recami and M. Zamboni-Rached, Adv. Imaging Electron Phys. 156,
235 (2009),
http://dx.doi.org/10.1016/S1076-5670%2808%2901404-3
[10] E. Gaižauskas, A. Dubietis, V. Kudriašov, V. Sirutkaitis, A.
Couairon, D. Faccio, and P. Di Trapani, in: Self-focusing: Past
and Present, Topics in Applied Physics Vol. 114 (Springer,
2009), p. 457–479,
http://dx.doi.org/10.1007/978-0-387-34727-1
[11] Localized Waves, eds. H.E. Hernández-Figueroa, M.
Zamboni-Rached, and E. Recami, Wiley Series in Microwave and Optical
Engineering (J. Wiley, New York, 2008),
http://dx.doi.org/10.1002/9780470168981
[12] H. Sõnajalg, M. Rätsep, and P. Saari, Opt. Lett. 22,
310 (1997),
http://dx.doi.org/10.1364/OL.22.000310
[13] P. Saari and K. Reivelt, Phys. Rev. Lett. 79, 4135
(1997),
http://dx.doi.org/10.1103/PhysRevLett.79.4135
[14] K. Reivelt and P. Saari, Phys. Rev. E 66, 056611
(2002),
http://dx.doi.org/10.1103/PhysRevE.66.056611
[15] I. Alexeev, K.Y. Kim, and H.M. Milchberg, Phys. Rev. Lett. 88,
073901 (2002),
http://dx.doi.org/10.1103/PhysRevLett.88.073901
[16] R. Grunwald, V. Kebbel, U. Griebner, U. Neumann, A. Kummrow, M.
Rini, E.T.J. Nibbering, M. Piché, G. Rousseau, and M. Fortin, Phys.
Rev. A 67, 063820 (2003),
http://dx.doi.org/10.1103/PhysRevA.67.063820
[17] F. Bonaretti, D. Faccio, M. Clerici, J. Biegert, and P. Di
Trapani, Opt. Express 17, 9804 (2009),
http://dx.doi.org/10.1364/OE.17.009804
[18] P. Bowlan, R. Trebino, H. Valtna-Lukner, M. Lõhmus, P. Piksarv,
and P. Saari, Opt. Lett. 34, 2276 (2009),
http://dx.doi.org/10.1364/OL.34.002276
[19] H. Valtna-Lukner, P. Bowlan, M. Lõhmus, P. Piksarv, R. Trebino,
and P. Saari, Opt. Express 17, 14948 (2009),
http://dx.doi.org/10.1364/OE.17.014948
[20] M. Clerici, D. Faccio, A. Lotti, E. Rubino, O. Jedrkiewicz, J.
Biegert, and P. Di Trapani, Opt. Express 16, 19807 (2008),
http://dx.doi.org/10.1364/OE.16.019807
[21] J.W. Goodman, Introduction to Fourier Optics, 3rd ed.
(Roberts & Co, Englewood, 2005),
http://www.amazon.com/Introduction-Fourier-Optics-Joseph-Goodman/dp/0974707724/
[22] M. Born and E. Wolf, Principles of Optics, 6th ed.
(Pergamon Press, Oxford, 1987),
http://www.amazon.com/Principles-Optics-Electromagnetic-Propagation-Interference/dp/0521642221/
[23] G.A. Maggi, Ann. di Matem. Pura ed Appl., IIa 16, 21
(1888),
http://dx.doi.org/10.1007/BF02420290
[24] A. Rubinowicz, Nature 180, 160 (1957),
http://dx.doi.org/10.1038/180160a0
[25] P. Bowlan, U. Fuchs, R. Trebino, and U.D. Zeitner, Opt. Express
16, 13663 (2008),
http://dx.doi.org/10.1364/OE.16.013663
[26] Z.L. Horváth and Z. Bor, Phys. Rev. E 63, 026601
(2001),
http://dx.doi.org/10.1103/PhysRevE.63.026601
[27] Z.L. Horváth, J. Klebniczki, G. Kurdi, and A. Kovács, Opt.
Commun. 239, 243 (2004),
http://dx.doi.org/10.1016/j.optcom.2004.05.045
[28] R. Trebino, Frequency-Resolved Optical Gating: The
Measurement of Ultrashort Laser Pulses (Kluwer Academic
Publishers, Boston, 2002),
http://www.amazon.com/Frequency-Resolved-Optical-Gating-Measurement-Ultrashort/dp/1402070667/
[29] P. Bowlan, P. Gabolde, and R. Trebino, Opt. Express 15,
10219 (2007),
http://dx.doi.org/10.1364/OE.15.010219
[30] P.W. Milonni, J. Phys. B 35, R31 (2002),
http://dx.doi.org/10.1088/0953-4075/35/6/201