[PDF]    http://dx.doi.org/10.3952/lithjphys.50109

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 129–134 (2010)


MANUFACTURING OF DIFFRACTIVE ELEMENTS IN FUSED SILICA USING HIGH REPETITION RATE FEMTOSECOND Yb:KGW LASER PULSES
D. Paipulas, V. Kudriašov, K. Kuršelis, M. Malinauskas, and V. Sirutkaitis
Laser Research Centre, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: domas.paipulas@ff.stud.vu.lt

Received 27 November 2009; revised 8 February 2010; accepted 19 March 2010

In this work we discuss volume phase gratings made in fused silica using high-repetition-rate femtosecond Yb:KGW laser pulses. By exposing fused silica to focused femtosecond laser radiation, regions of modified refractive index were induced. Exploiting this phenomenon gratings were fabricated in the bulk of fused silica by the direct laser writing technique. Gratings with index change of 0.008 and diffraction efficiency of 57% were successfully manufactured using 300-fs laser pulses focused in the fused silica with a 0.42 numerical aperture objective.
Keywords: volume phase grating, refractive index change, femtosecond microfabrication, fused silica
PACS: 42.40.Eq, 42.62.Cf, 42.70.Ce


DIFRAKCINIŲ ELEMENTŲ GAMYBA LYDYTAME KVARCE, NAUDOJANT DIDELIO PASIKARTOJIMO DAŽNIO Yb:KGV LAZERIO FEMTOSEKUNDINIUS IMPULSUS
D. Paipulas, V. Kudriašov, K. Kuršelis, M. Malinauskas, V. Sirutkaitis
Vilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva

Aptariami tūrinių fazinių gardelių veikimo principai ir jų įrašymo galimybės lydytame kvarce, naudojant didelio pasikartojimo dažnio femtosekundinius lazerinius impulsus, gautus Yb:KGV lazerine sistema. Veikiant ultratrumpąja spinduliuote, lydytame kvarce galima sukurti modifikuoto lūžio rodiklio sritis. Naudojantis šiuo reiškiniu, tiesioginio lazerinio įrašymo būdu buvo sukurtos tūrinės fazinės gardelės ir išmatuoti jų difrakciniai efektyvumai. Nustatyti optimalūs lazerinės spinduliuotės parametrai, kuriems esant pasiekiamas didžiausias (iki 57 %) efektyvumas. Eksperimentiškai nustatytos difrakcinio efektyvumo priklausomybės nuo gardelės storio ir apskaičiuotos optimalios storio vertės. įvertintas maksimalus lūžio rodiklio modifikacijos gylis, gautas fokusuojant 300 fs trukmės impulsus 0,42 skaitmeninės apertūros lęšiu, kuris siekia 0,008.


References / Nuorodos


[1] K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729–1731 (1996),
http://dx.doi.org/10.1364/OL.21.001729
[2] L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Study of damage in fused silica induced by ultra-short IR laser pulses, Opt. Commun. 191, 333–339 (2001),
http://dx.doi.org/10.1016/S0030-4018%2801%2901152-X
[3] V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, Birefringent modifications induced by femtosecond filaments in optical glass, Appl. Phys A 93, 571–576 (2008),
http://dx.doi.org/10.1007/s00339-008-4681-1
[4] E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, and E. Mazur, Three-dimensional optical storage inside transparent materials, Opt. Lett. 21, 2023–2025 (1996),
http://dx.doi.org/10.1364/OL.21.002023
[5] K. Hirao and K. Miura, Writing waveguides and gratings in silica and related materials by a femtosecond laser, J. Non-Cryst. Solids 239, 91–95 (1998),
http://dx.doi.org/10.1016/S0022-3093%2898%2900755-8
[6] A.M. Streltsov and N.F. Borrelli, Study of femtosecond-laser-written waveguides in glasses, J. Opt. Soc. Am. B 19, 2496–2504 (2002),
http://dx.doi.org/10.1364/JOSAB.19.002496
[7] T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K. Hayashi, Estimation of the refractive index change in glass induced by femtosecond laser pulses, Opt. Rev. 7, 14–17 (2000),
http://dx.doi.org/10.1007/s10043-000-0014-0
[8] Y. Bellouard, A. Said, M. Dugan, and P. Bado, Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching, Opt. Express 12, 2120–2129 (2004),
http://dx.doi.org/10.1364/OPEX.12.002120
[9] J.A. Arns, W.S. Colburn, and S.C. Barden, Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing, Proc. SPIE 3779, 313–323 (1999),
http://dx.doi.org/10.1117/12.368222
[10] O.M. Efimov, L.B. Glebov, and V.I. Smirnov, High-frequency Bragg gratings in a photothermorefractive glass, Opt. Lett. 25, 1693–1695 (2000),
http://dx.doi.org/10.1364/OL.25.001693
[11] C. Florea and K. Winick, Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses, Lightwave Technol. 21, 246–253 (2003),
http://dx.doi.org/10.1109/JLT.2003.808678
[12] T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, Structural modification in fused silica by a femtosecond fiber laser at 1558 nm, Opt. Express 14, 6971–6980 (2006),
http://dx.doi.org/10.1364/OE.14.006971
[13] K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass, Jpn. J. Appl. Phys. 42, 6916–6919 (2003),
http://dx.doi.org/10.1143/JJAP.42.6916
[14] H. Kogelnik, Coupled wave theory for thick hologram gratings, Bell Syst. Tech. J. 48, 2909–2947 (1969),
http://adsabs.harvard.edu/abs/1969BSTJ...48.2909K
[15] I.V. Ciapurin, L.B. Glebov, and V.I. Smirnov, Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings, Opt. Eng. 45, 015802-1–9 (2006),
http://dx.doi.org/10.1117/1.2159470
[16] I.K. Baldry, J. Bland-Hawthorn, and J.G. Robertson, Volume phase holographic gratings: Polarization properties and diffraction efficiency, Publ. Astron. Soc. Pac. 116, 403–414 (2004),
http://dx.doi.org/10.1086/383622
[17] V. Kudriašov, A. Savickas, E. Gaižauskas, and V. Sirutkaitis, Influence of the nonlinear losses on the modifications induced by femtosecond filaments in fused silica, Proc. SPIE 7132, 713204 (2008),
http://dx.doi.org/10.1117/12.804418
[18] A. Mermillod-Blondin, I.M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. Bulgakova, and I.V. Hertel, Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy, J. Laser Micro / Nanoeng. 1, 155–160 (2006),
http://dx.doi.org/10.2961/jlmn.2006.03.0001