[PDF]
http://dx.doi.org/10.3952/lithjphys.50109
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 129–134 (2010)
MANUFACTURING OF DIFFRACTIVE
ELEMENTS IN FUSED SILICA USING HIGH REPETITION RATE FEMTOSECOND
Yb:KGW LASER PULSES
D. Paipulas, V. Kudriašov, K. Kuršelis, M. Malinauskas, and V.
Sirutkaitis
Laser Research Centre, Vilnius University, Saulėtekio 10,
LT-10223 Vilnius, Lithuania
E-mail: domas.paipulas@ff.stud.vu.lt
Received 27 November 2009; revised
8 February 2010; accepted 19 March 2010
In this work we discuss volume
phase gratings made in fused silica using high-repetition-rate
femtosecond Yb:KGW laser pulses. By exposing fused silica to
focused femtosecond laser radiation, regions of modified
refractive index were induced. Exploiting this phenomenon gratings
were fabricated in the bulk of fused silica by the direct laser
writing technique. Gratings with index change of 0.008 and
diffraction efficiency of 57% were successfully manufactured using
300-fs laser pulses focused in the fused silica with a 0.42
numerical aperture objective.
Keywords: volume phase grating,
refractive index change, femtosecond microfabrication, fused
silica
PACS: 42.40.Eq, 42.62.Cf, 42.70.Ce
DIFRAKCINIŲ ELEMENTŲ GAMYBA
LYDYTAME KVARCE, NAUDOJANT DIDELIO PASIKARTOJIMO DAŽNIO Yb:KGV
LAZERIO FEMTOSEKUNDINIUS IMPULSUS
D. Paipulas, V. Kudriašov, K. Kuršelis, M. Malinauskas, V.
Sirutkaitis
Vilniaus universiteto Lazerinių tyrimų centras, Vilnius,
Lietuva
Aptariami tūrinių fazinių gardelių veikimo
principai ir jų įrašymo galimybės lydytame kvarce, naudojant
didelio pasikartojimo dažnio femtosekundinius lazerinius impulsus,
gautus Yb:KGV lazerine sistema. Veikiant ultratrumpąja
spinduliuote, lydytame kvarce galima sukurti modifikuoto lūžio
rodiklio sritis. Naudojantis šiuo reiškiniu, tiesioginio lazerinio
įrašymo būdu buvo sukurtos tūrinės fazinės gardelės ir išmatuoti
jų difrakciniai efektyvumai. Nustatyti optimalūs lazerinės
spinduliuotės parametrai, kuriems esant pasiekiamas didžiausias
(iki 57 %) efektyvumas. Eksperimentiškai nustatytos difrakcinio
efektyvumo priklausomybės nuo gardelės storio ir apskaičiuotos
optimalios storio vertės. įvertintas maksimalus lūžio rodiklio
modifikacijos gylis, gautas fokusuojant 300 fs trukmės impulsus
0,42 skaitmeninės apertūros lęšiu, kuris siekia 0,008.
References / Nuorodos
[1] K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing
waveguides in glass with a femtosecond laser, Opt. Lett. 21,
1729–1731 (1996),
http://dx.doi.org/10.1364/OL.21.001729
[2] L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Study of
damage in fused silica induced by ultra-short IR laser pulses, Opt.
Commun. 191, 333–339 (2001),
http://dx.doi.org/10.1016/S0030-4018%2801%2901152-X
[3] V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, Birefringent
modifications induced by femtosecond filaments in optical glass,
Appl. Phys A 93, 571–576 (2008),
http://dx.doi.org/10.1007/s00339-008-4681-1
[4] E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her,
J.P. Callan, and E. Mazur, Three-dimensional optical storage inside
transparent materials, Opt. Lett. 21, 2023–2025 (1996),
http://dx.doi.org/10.1364/OL.21.002023
[5] K. Hirao and K. Miura, Writing waveguides and gratings in silica
and related materials by a femtosecond laser, J. Non-Cryst. Solids 239,
91–95 (1998),
http://dx.doi.org/10.1016/S0022-3093%2898%2900755-8
[6] A.M. Streltsov and N.F. Borrelli, Study of
femtosecond-laser-written waveguides in glasses, J. Opt. Soc. Am. B
19, 2496–2504 (2002),
http://dx.doi.org/10.1364/JOSAB.19.002496
[7] T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, and K.
Hayashi, Estimation of the refractive index change in glass induced
by femtosecond laser pulses, Opt. Rev. 7, 14–17 (2000),
http://dx.doi.org/10.1007/s10043-000-0014-0
[8] Y. Bellouard, A. Said, M. Dugan, and P. Bado, Fabrication of
high-aspect ratio, micro-fluidic channels and tunnels using
femtosecond laser pulses and chemical etching, Opt. Express 12,
2120–2129 (2004),
http://dx.doi.org/10.1364/OPEX.12.002120
[9] J.A. Arns, W.S. Colburn, and S.C. Barden, Volume phase gratings
for spectroscopy, ultrafast laser compressors, and wavelength
division multiplexing, Proc. SPIE 3779, 313–323 (1999),
http://dx.doi.org/10.1117/12.368222
[10] O.M. Efimov, L.B. Glebov, and V.I. Smirnov, High-frequency
Bragg gratings in a photothermorefractive glass, Opt. Lett. 25,
1693–1695 (2000),
http://dx.doi.org/10.1364/OL.25.001693
[11] C. Florea and K. Winick, Fabrication and characterization of
photonic devices directly written in glass using femtosecond laser
pulses, Lightwave Technol. 21, 246–253 (2003),
http://dx.doi.org/10.1109/JLT.2003.808678
[12] T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K.
Itoh, Structural modification in fused silica by a femtosecond fiber
laser at 1558 nm, Opt. Express 14, 6971–6980 (2006),
http://dx.doi.org/10.1364/OE.14.006971
[13] K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh,
Volume grating induced by a self-trapped long filament of
femtosecond laser pulses in silica glass, Jpn. J. Appl. Phys. 42,
6916–6919 (2003),
http://dx.doi.org/10.1143/JJAP.42.6916
[14] H. Kogelnik, Coupled wave theory for thick hologram gratings,
Bell Syst. Tech. J. 48, 2909–2947 (1969),
http://adsabs.harvard.edu/abs/1969BSTJ...48.2909K
[15] I.V. Ciapurin, L.B. Glebov, and V.I. Smirnov, Modeling of phase
volume diffractive gratings, part 1: transmitting sinusoidal uniform
gratings, Opt. Eng. 45, 015802-1–9 (2006),
http://dx.doi.org/10.1117/1.2159470
[16] I.K. Baldry, J. Bland-Hawthorn, and J.G. Robertson, Volume
phase holographic gratings: Polarization properties and diffraction
efficiency, Publ. Astron. Soc. Pac. 116, 403–414 (2004),
http://dx.doi.org/10.1086/383622
[17] V. Kudriašov, A. Savickas, E. Gaižauskas, and V. Sirutkaitis,
Influence of the nonlinear losses on the modifications induced by
femtosecond filaments in fused silica, Proc. SPIE 7132,
713204 (2008),
http://dx.doi.org/10.1117/12.804418
[18] A. Mermillod-Blondin, I.M. Burakov, R. Stoian, A. Rosenfeld, E.
Audouard, N. Bulgakova, and I.V. Hertel, Direct observation of
femtosecond laser induced modifications in the bulk of fused silica
by phase contrast microscopy, J. Laser Micro / Nanoeng. 1,
155–160 (2006),
http://dx.doi.org/10.2961/jlmn.2006.03.0001