[PDF]    http://dx.doi.org/10.3952/lithjphys.50110

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 47–53 (2010)


HOLOGRAPHIC RECORDING IN PHOTOCHROME-CHALCOGENIDE COMPOSITES
A. Gerbredersa,b, J. Aleksejevaa, A. Danilovsa, and J. Teterisa
aInstitute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
E-mail: andrejmah@gmail.com
bDepartment of Physics, Daugavpils University, Parades 1, Daugavpils, LV-5401, Latvia

Received 26 August 2009; revised 17 February 2010; accepted 19 March 2010

The method of preparation of thin triple composite films of organic polymer-chalcogenide-photochromes is described, and some features of photo induced changes of optical properties and holographic recording in this system are studied.
Films of composite were obtained from solutions of arsenic sulphide and organic polymers, such as “Disperbyk” (produced by BYK-Chemie GmbH) and polyvinylacetate in organic solvents. The azobenzene DR-1 and spiropyran solutions were added in this mixture. The films were obtained by casting the material on glass or quartz substrate. The dry film thickness was in the range of 3–10 μm.
The changes of absorption spectra of the films induced by UV (248, 325, and 375 nm) laser light were studied and analysed. The holographic recording of diffraction gratings was performed by different laser lines (325, 442, and 532 nm). During recording the diffraction efficiency was measured simultaneously in transmission and reflection mode. The formation of relief on the film surface was observed and the profile of the gratings was analysed by atomic force microscope. The influence of photoisomerization and photo induced mass transport on the surface-relief formation process has been discussed.
Keywords: arsenic sulphide, Disperse Red 1, spiropyran, polymer-photochrome composite, polymer-photochrome-chalcogenide composite, holographic grating
PACS: 78.66.Sq


HOLOGRAFINIS ĮRAŠYMAS FOTOCHROMO-CHALKOGENIDO KOMPOZITUOSE
A. Gerbredersa,b, J. Aleksejevaa, A. Danilovsa, J. Teterisa
aLatvijos universiteto Kietojo kūno fizikos institutas, Ryga, Latvija
bDaugpilio universitetas, Daugpilis, Latvija

Aprašytas metodas plonoms trigubo kompozito, sudaryto iš organinio polimero, chalkogenido ir fotochromo, plėvelėms gaminti. Kartu ištirtas tokių plėvelių optinių savybių kitimas veikiant šviesai ir jų panaudojimas holografiniam įrašymui. Kompozito plėvelės gautos iš arseno sulfido, organinių polimerų, tokių kaip „Disperbyk“ (gaminamas BYK Chemie GmbH), ir polivinilacetato tirpalų organiniuose tirpikliuose. Papildomai į šį mišinį buvo pridedama azobenzeno dispersinio raudonojo dažiklio (DR-1) ir spiropirano tirpalų. Plėvelės pagamintos liejant šiąmedžiagą ant stiklo ar kvarco pagrindo. Sausos plėvelės storis siekė 1–3 μm. Tirti ir analizuoti plėvelių sugerties spektrų pokyčiai, sukeliami UV (248, 325 ir 375 nm) lazerinės spinduliuotės. Skirtingo bangos ilgio (325, 442 ir 532 nm) lazerio spinduliuote holografiškai įrašinėtos difrakcinės gardelės. įrašo metu matuotas vienalaikis perėjusiosios ir atspindėtosios šviesos difrakcinis efektyvumas. Reljefo susiformavimas plėvelės paviršiuje stebėtas ir gardelių profilis analizuotas atominės jėgos mikroskopu. Aptarta fotoizomerizacijos ir šviesos sukeliamos masės pernašos įtaka paviršinio reljefo formavimuisi.


References / Nuorodos


[1] U. Gertners and J. Teteris, Direct holographic recording on amorphous chalcogenide films, in: 22nd International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS22), Colorado, USA, 19–24 August 2007, abstract ThP13.7
[2] U. Gertners and J. Teteris, Latvian J. Phys. Tech. Sci. 3, 30–36 (2009)
[3] A. Andries, V. Bivol, A. Prisacar, S. Sergheev, A. Meshalkin, S. Robu, N. Barba, and N. Sirbu, J. Optoelectron. Adv. Mater. 7, 1169–1178 (2005),
http://inoe.inoe.ro/JOAM/pdf7_3/Andries.pdf
[4] A. Gerbreders, J. Teteris, and V. Kolobjonoks, Proc. SPIE 7142, 714212 (2008),
http://dx.doi.org/10.1117/12.815457
[5] C. Cojocariu and P. Rochon, Pure Appl. Chem. 76, 1479–1497 (2004),
http://dx.doi.org/10.1351/pac200476071479
[6] Y. Atassi, J. Chauvin, J.A. Delaire, J.-F. Delouis, I. Fanton-Maltey, and K. Nakatani, Pure Appl. Chem. 70, 2157–2166 (1998),
http://dx.doi.org/10.1351/pac199870112157
[7] A. Gerbreders, J. Teteris, J. Aleksejeva, and A. Danilovs, Latvian J. Phys. Tech. Sci. 3, 23–29 (2009)
[8] G.A. Bordovsky, S.A. Nemov, N.I. Anisimova, I.A. Dzemidko, A.V. Marchenko, and P.P. Seregin, Semiconductors 43, 352–354 (2009),
http://dx.doi.org/10.1134/S1063782609030166
[9] A. Gerbreders and J. Teteris, J. Optoelectron. Adv. Mater. 9, 3161–3163 (2007),
http://inoe.inoe.ro/joam/download.php?idu=982