[PDF]
http://dx.doi.org/10.3952/lithjphys.50110
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 47–53 (2010)
HOLOGRAPHIC RECORDING IN
PHOTOCHROME-CHALCOGENIDE COMPOSITES
A. Gerbredersa,b, J. Aleksejevaa, A.
Danilovsa, and J. Teterisa
aInstitute of Solid State Physics, University of
Latvia, Kengaraga 8, LV-1063 Riga, Latvia
E-mail: andrejmah@gmail.com
bDepartment of Physics, Daugavpils University,
Parades 1, Daugavpils, LV-5401, Latvia
Received 26 August 2009; revised 17
February 2010; accepted 19 March 2010
The method of preparation of thin
triple composite films of organic
polymer-chalcogenide-photochromes is described, and some features
of photo induced changes of optical properties and holographic
recording in this system are studied.
Films of composite were obtained from solutions of arsenic
sulphide and organic polymers, such as “Disperbyk” (produced by
BYK-Chemie GmbH) and polyvinylacetate in organic solvents. The
azobenzene DR-1 and spiropyran solutions were added in this
mixture. The films were obtained by casting the material on glass
or quartz substrate. The dry film thickness was in the range of
3–10 μm.
The changes of absorption spectra of the films induced by UV (248,
325, and 375 nm) laser light were studied and analysed. The
holographic recording of diffraction gratings was performed by
different laser lines (325, 442, and 532 nm). During recording the
diffraction efficiency was measured simultaneously in transmission
and reflection mode. The formation of relief on the film surface
was observed and the profile of the gratings was analysed by
atomic force microscope. The influence of photoisomerization and
photo induced mass transport on the surface-relief formation
process has been discussed.
Keywords: arsenic sulphide, Disperse Red
1, spiropyran, polymer-photochrome composite,
polymer-photochrome-chalcogenide composite, holographic grating
PACS: 78.66.Sq
HOLOGRAFINIS ĮRAŠYMAS
FOTOCHROMO-CHALKOGENIDO KOMPOZITUOSE
A. Gerbredersa,b, J. Aleksejevaa, A.
Danilovsa, J. Teterisa
aLatvijos universiteto Kietojo kūno fizikos
institutas, Ryga, Latvija
bDaugpilio universitetas, Daugpilis, Latvija
Aprašytas metodas plonoms trigubo kompozito,
sudaryto iš organinio polimero, chalkogenido ir fotochromo,
plėvelėms gaminti. Kartu ištirtas tokių plėvelių optinių savybių
kitimas veikiant šviesai ir jų panaudojimas holografiniam
įrašymui. Kompozito plėvelės gautos iš arseno sulfido, organinių
polimerų, tokių kaip „Disperbyk“ (gaminamas BYK Chemie GmbH), ir
polivinilacetato tirpalų organiniuose tirpikliuose. Papildomai į
šį mišinį buvo pridedama azobenzeno dispersinio raudonojo dažiklio
(DR-1) ir spiropirano tirpalų. Plėvelės pagamintos liejant
šiąmedžiagą ant stiklo ar kvarco pagrindo. Sausos plėvelės storis
siekė 1–3 μm. Tirti ir analizuoti plėvelių sugerties
spektrų pokyčiai, sukeliami UV (248, 325 ir 375 nm) lazerinės
spinduliuotės. Skirtingo bangos ilgio (325, 442 ir 532 nm) lazerio
spinduliuote holografiškai įrašinėtos difrakcinės gardelės. įrašo
metu matuotas vienalaikis perėjusiosios ir atspindėtosios šviesos
difrakcinis efektyvumas. Reljefo susiformavimas plėvelės
paviršiuje stebėtas ir gardelių profilis analizuotas atominės
jėgos mikroskopu. Aptarta fotoizomerizacijos ir šviesos sukeliamos
masės pernašos įtaka paviršinio reljefo formavimuisi.
References / Nuorodos
[1] U. Gertners and J. Teteris, Direct holographic recording on
amorphous chalcogenide films, in: 22nd International Conference
on Amorphous and Nanocrystalline Semiconductors (ICANS22),
Colorado, USA, 19–24 August 2007, abstract ThP13.7
[2] U. Gertners and J. Teteris, Latvian J. Phys. Tech. Sci. 3,
30–36 (2009)
[3] A. Andries, V. Bivol, A. Prisacar, S. Sergheev, A. Meshalkin, S.
Robu, N. Barba, and N. Sirbu, J. Optoelectron. Adv. Mater. 7,
1169–1178 (2005),
http://inoe.inoe.ro/JOAM/pdf7_3/Andries.pdf
[4] A. Gerbreders, J. Teteris, and V. Kolobjonoks, Proc. SPIE 7142,
714212 (2008),
http://dx.doi.org/10.1117/12.815457
[5] C. Cojocariu and P. Rochon, Pure Appl. Chem. 76,
1479–1497 (2004),
http://dx.doi.org/10.1351/pac200476071479
[6] Y. Atassi, J. Chauvin, J.A. Delaire, J.-F. Delouis, I.
Fanton-Maltey, and K. Nakatani, Pure Appl. Chem. 70,
2157–2166 (1998),
http://dx.doi.org/10.1351/pac199870112157
[7] A. Gerbreders, J. Teteris, J. Aleksejeva, and A. Danilovs,
Latvian J. Phys. Tech. Sci. 3, 23–29 (2009)
[8] G.A. Bordovsky, S.A. Nemov, N.I. Anisimova, I.A. Dzemidko, A.V.
Marchenko, and P.P. Seregin, Semiconductors 43, 352–354
(2009),
http://dx.doi.org/10.1134/S1063782609030166
[9] A. Gerbreders and J. Teteris, J. Optoelectron. Adv. Mater. 9,
3161–3163 (2007),
http://inoe.inoe.ro/joam/download.php?idu=982