[PDF]    http://dx.doi.org/10.3952/lithjphys.50112

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 55–61 (2010)


ORGANIC DYE DOPED MICROSTRUCTURES FOR OPTICALLY ACTIVE FUNCTIONAL DEVICES FABRICATED VIA TWO-PHOTON POLYMERIZATION TECHNIQUE
A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas
Department of Quantum Electronics and Laser Research Centre, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: mangirdas.malinauskas@ff.vu.lt

Received 12 October 2009; revised 2 March 2010; accepted 19 March 2010

Femtosecond Laser Two-Photon Polymerization (LTPP) is a fabrication technique based on ultra-localized polymerization reaction initiated by nonlinear absorption of tightly focused light beam. It offers possibility to form three-dimensional (3D) micro- and nanostructures out of photopolymers. The point-by-point photostructuring allows fabrication of objects directly from Computer Aided Design (CAD) models and thereby the geometry of required structure can be changed flexibly. The smallest structural elements, also called voxels (volumetric pixels), of 200 nm lateral dimensions can be achieved with high repeatability. In this article, we present 3D microstructures fabricated out of hybrid zirconium-silicon containing hybrid sol-gel photopolymer ORMOSIL (SZ2080) doped with conventionally used fluorescent dyes: rhodamine 6G (R6G), fluorescein, DCM LC6500, and coumarin 152. The structural quality of the microobjects was investigated by Scanning Electron Microscopy (SEM). Interior of doped 3D micro- and nanostructures has been diagnosed with a custom made scanning fluorescence microscope. Additionally, fluorescing artificial scaffolds, which could be used for cell growth and cell tracking, were manufactured. Finally, the model of Distributed Feedback Dye Laser (DFBL) was successfully fabricated and this demonstrated the possibility to manufacture optically active elements from doped photopolymers.
Keywords: direct laser writing, doped polymers, 3D fabrication, distributed feedback dye laser
PACS: 42.70.Jk, 87.85.jj, 81.07.Pr


OPTIŠKAI AKTYVIŲ FUNKCINIŲ MIKRODARINIŲ FORMAVIMAS DVIFOTONĖS POLIMERIZACIJOS BŪDU IŠ POLIMERŲ SU ORGANINIŲ DAŽŲ PRIEMAIŠA
A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, R. Gadonas
Vilniaus universitetas, Vilnius, Lietuva

Eksperimentiškai parodyta, kad lazerinės dvifotonės fotopolimerizacijos (LDFP) būdu galima formuoti optiškai aktyvias funkcines mikro- ir nanostruktūras, kurių atkartojama skyra siekia iki 200 nm. Į ORMOSIL (SZ2080) fotopolimerą buvo įmaišoma įvairių organinių dažų (rodamino 6G, fluoresceino, DCM LC6500 ir kumarino 152) iki 0,05 % koncentracijos, nepaveikiant mikrodarinių formavimo kokybės. Fluorescencinės skenavimo mikroskopijos metodu charakterizuoti dariniai, nustatyta jų vidinė sandara ir parodyta, kad organiniai dažai išlieka aktyvūs po darinių suformavimo LDFP metodu. Pademonstruota galimybė taikyti dirbtinius skeletus su organinių dažų priemaiša ląstelių proliferacijos eksperimentams. Suformuotas paskirstyto grįžtamojo ryšio dažų mikrolazerio modelis. Nurodytos priežastys (maža organinių dažų koncentracija ir jų stabilumas polimerinėje matricoje), ribojančios šio elemento funkcionavimą, pateikti galimi to sprendimo būdai.


References / Nuorodos


[1] S. Maruo, O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett. 22, 132–134 (1997),
http://dx.doi.org/10.1364/OL.22.000132
[2] M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, Femtosecond two-photon stereolithography, Appl. Phys. A 73, 561–566 (2001),
http://dx.doi.org/10.1007/s003390100934
[3] J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics, Opt. Lett. 28(5), 301–303 (2003),
http://dx.doi.org/10.1364/OL.28.000301
[4] S.-H. Park, D.-Y. Yang, and K.-S. Lee, Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices, Laser & Photon. Rev. 3(1–2), 1–11 (2009),
http://dx.doi.org/10.1002/lpor.200810027
[5] I. Wang, M. Bouriau, and P.L. Baldeck, Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser, Opt. Lett. 27(15), 1348–1350 (2002),
http://dx.doi.org/10.1364/OL.27.001348
[6] X.Z. Dong, Z.S. Zhao, and X.M. Duan, Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication, Appl. Phys. Lett. 92(9), 091113 (2008),
http://dx.doi.org/10.1063/1.2841042
[7] S. Wu, J. Serbin, and M. Gu, Two-photon polymerization for three-dimensional micro-fabrication, J. Photochem. Photobiol. A 181, 1–11 (2006),
http://dx.doi.org/10.1016/j.jphotochem.2006.03.004
[8] M. Malinauskas, H. Gilbergs, V. Purlys, A. Žukauskas, M. Rutkauskas, and R. Gadonas, Femtosecond laser-induced two-photon photopolymerization for structuring of micro-optical and photonic devices, Proc. SPIE 7366, 736622 (2009),
http://dx.doi.org/10.1117/12.821776
[9] S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, Two-photon-induced polymerization in a laser gain medium for optical microstructure, Appl. Phys. Lett. 82(19), 3221–3223 (2003),
http://dx.doi.org/10.1063/1.1573350
[10] H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes, Appl. Phys. Lett. 79(10), 1411–1413 (2001),
http://dx.doi.org/10.1063/1.1399312
[11] S. Constantino, K.G. Heinze, O.E. Martinez, P. Koninck, and P.W. Wiseman, Two-photon fluorescent microlithography for live-cell imaging, Microsc. Res. Tech. 68, 272–276 (2005),
http://dx.doi.org/10.1002/jemt.20247
[12] S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.A. Kolb, H. Haferkamp, and B.N. Chichkov, Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique, J. Biomater. Appl. 22(3), 275–287 (2007),
http://dx.doi.org/10.1177/0885328207077590
[13] T. Woggon, T. Kleiner, M. Punke, and U. Lemmer, Nanostructuring of organic–inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization, Opt. Express 17(4), 2500–2507 (2009),
http://dx.doi.org/10.1364/OE.17.002500
[14] M.B. Christiansen, M. Scholer, and A. Kristensen, Integration of active and passive polymer optics, Opt. Express 15(7), 3931–3939 (2007),
http://dx.doi.org/10.1364/OE.15.003931
[15] A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, and B.N. Chichkov, Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials, Opt. Express 17(4), 2143–2148 (2009),
http://dx.doi.org/10.1364/OE.15.003931
[16] T. Baldacchini, M. Zimmerley, E.O. Potma, and R. Zadoyan, Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy, Proc. SPIE 7201, 72010Q (2009),
http://dx.doi.org/10.1117/12.808269
[17] M. Malinauskas, P. Danilevičius, D. Baltriukienė, M. Rutkauskas, A. Žukauskas, Ž. Kairytė, G. Bičkauskaitė, V. Purlys, D. Paipulas, V. Bukelskienė, and R. Gadonas, 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser, Lithuanian J. Phys. 50, 75–82 (2010),
http://dx.doi.org/10.3952/lithjphys.50121
[18] M. Gersborg-Hansen and A. Kristensen, Tunability of optofluidic distributed feedback dye laser, Opt. Express 15(1), 137–142 (2006),
http://dx.doi.org/10.1364/OE.15.000137
[19] C.R. Mendonca, D.S. Correa, M. Marlow, T. Voss, P. Tayalia, and E. Mazur, Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer, Appl. Phys. Lett. 95, 113309 (2009),
http://dx.doi.org/10.1063/1.3232207