[PDF]
http://dx.doi.org/10.3952/lithjphys.50112
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 55–61 (2010)
ORGANIC DYE DOPED
MICROSTRUCTURES FOR OPTICALLY ACTIVE FUNCTIONAL DEVICES
FABRICATED VIA TWO-PHOTON POLYMERIZATION TECHNIQUE
A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas,
M. Vengris, and R. Gadonas
Department of Quantum Electronics and Laser Research Centre,
Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: mangirdas.malinauskas@ff.vu.lt
Received 12 October 2009; revised 2
March 2010; accepted 19 March 2010
Femtosecond Laser Two-Photon
Polymerization (LTPP) is a fabrication technique based on
ultra-localized polymerization reaction initiated by nonlinear
absorption of tightly focused light beam. It offers possibility to
form three-dimensional (3D) micro- and nanostructures out of
photopolymers. The point-by-point photostructuring allows
fabrication of objects directly from Computer Aided Design (CAD)
models and thereby the geometry of required structure can be
changed flexibly. The smallest structural elements, also called
voxels (volumetric pixels), of 200 nm lateral dimensions can be
achieved with high repeatability. In this article, we present 3D
microstructures fabricated out of hybrid zirconium-silicon
containing hybrid sol-gel photopolymer ORMOSIL (SZ2080) doped with
conventionally used fluorescent dyes: rhodamine 6G (R6G),
fluorescein, DCM LC6500, and coumarin 152. The structural quality
of the microobjects was investigated by Scanning Electron
Microscopy (SEM). Interior of doped 3D micro- and nanostructures
has been diagnosed with a custom made scanning fluorescence
microscope. Additionally, fluorescing artificial scaffolds, which
could be used for cell growth and cell tracking, were
manufactured. Finally, the model of Distributed Feedback Dye Laser
(DFBL) was successfully fabricated and this demonstrated the
possibility to manufacture optically active elements from doped
photopolymers.
Keywords: direct laser writing, doped
polymers, 3D fabrication, distributed feedback dye laser
PACS: 42.70.Jk, 87.85.jj, 81.07.Pr
OPTIŠKAI AKTYVIŲ FUNKCINIŲ
MIKRODARINIŲ FORMAVIMAS DVIFOTONĖS POLIMERIZACIJOS BŪDU IŠ
POLIMERŲ SU ORGANINIŲ DAŽŲ PRIEMAIŠA
A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas,
M. Vengris, R. Gadonas
Vilniaus universitetas, Vilnius, Lietuva
Eksperimentiškai parodyta, kad lazerinės
dvifotonės fotopolimerizacijos (LDFP) būdu galima formuoti
optiškai aktyvias funkcines mikro- ir nanostruktūras, kurių
atkartojama skyra siekia iki 200 nm. Į ORMOSIL (SZ2080)
fotopolimerą buvo įmaišoma įvairių organinių dažų (rodamino 6G,
fluoresceino, DCM LC6500 ir kumarino 152) iki 0,05 %
koncentracijos, nepaveikiant mikrodarinių formavimo kokybės.
Fluorescencinės skenavimo mikroskopijos metodu charakterizuoti
dariniai, nustatyta jų vidinė sandara ir parodyta, kad organiniai
dažai išlieka aktyvūs po darinių suformavimo LDFP metodu.
Pademonstruota galimybė taikyti dirbtinius skeletus su organinių
dažų priemaiša ląstelių proliferacijos eksperimentams. Suformuotas
paskirstyto grįžtamojo ryšio dažų mikrolazerio modelis. Nurodytos
priežastys (maža organinių dažų koncentracija ir jų stabilumas
polimerinėje matricoje), ribojančios šio elemento funkcionavimą,
pateikti galimi to sprendimo būdai.
References / Nuorodos
[1] S. Maruo, O. Nakamura, and S. Kawata, Three-dimensional
microfabrication with two-photon-absorbed photopolymerization, Opt.
Lett. 22, 132–134 (1997),
http://dx.doi.org/10.1364/OL.22.000132
[2] M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa,
Femtosecond two-photon stereolithography, Appl. Phys. A 73,
561–566 (2001),
http://dx.doi.org/10.1007/s003390100934
[3] J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz,
G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall,
Femtosecond laser-induced two-photon polymerization of
inorganic-organic hybrid materials for applications in photonics,
Opt. Lett. 28(5), 301–303 (2003),
http://dx.doi.org/10.1364/OL.28.000301
[4] S.-H. Park, D.-Y. Yang, and K.-S. Lee, Two-photon
stereolithography for realizing ultraprecise three-dimensional
nano/microdevices, Laser & Photon. Rev. 3(1–2), 1–11
(2009),
http://dx.doi.org/10.1002/lpor.200810027
[5] I. Wang, M. Bouriau, and P.L. Baldeck, Three-dimensional
microfabrication by two-photon-initiated polymerization with a
low-cost microlaser, Opt. Lett. 27(15), 1348–1350 (2002),
http://dx.doi.org/10.1364/OL.27.001348
[6] X.Z. Dong, Z.S. Zhao, and X.M. Duan, Improving spatial
resolution and reducing aspect ratio in multiphoton polymerization
nanofabrication, Appl. Phys. Lett. 92(9), 091113 (2008),
http://dx.doi.org/10.1063/1.2841042
[7] S. Wu, J. Serbin, and M. Gu, Two-photon polymerization for
three-dimensional micro-fabrication, J. Photochem. Photobiol. A 181,
1–11 (2006),
http://dx.doi.org/10.1016/j.jphotochem.2006.03.004
[8] M. Malinauskas, H. Gilbergs, V. Purlys, A. Žukauskas, M.
Rutkauskas, and R. Gadonas, Femtosecond laser-induced two-photon
photopolymerization for structuring of micro-optical and photonic
devices, Proc. SPIE 7366, 736622 (2009),
http://dx.doi.org/10.1117/12.821776
[9] S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko,
Two-photon-induced polymerization in a laser gain medium for optical
microstructure, Appl. Phys. Lett. 82(19), 3221–3223 (2003),
http://dx.doi.org/10.1063/1.1573350
[10] H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, Two-photon
photopolymerization and diagnosis of three-dimensional
microstructures containing fluorescent dyes, Appl. Phys. Lett. 79(10),
1411–1413 (2001),
http://dx.doi.org/10.1063/1.1399312
[11] S. Constantino, K.G. Heinze, O.E. Martinez, P. Koninck, and
P.W. Wiseman, Two-photon fluorescent microlithography for live-cell
imaging, Microsc. Res. Tech. 68, 272–276 (2005),
http://dx.doi.org/10.1002/jemt.20247
[12] S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.A. Kolb,
H. Haferkamp, and B.N. Chichkov, Three-dimensional cell growth on
structures fabricated from ORMOCER by two-photon polymerization
technique, J. Biomater. Appl. 22(3), 275–287 (2007),
http://dx.doi.org/10.1177/0885328207077590
[13] T. Woggon, T. Kleiner, M. Punke, and U. Lemmer, Nanostructuring
of organic–inorganic hybrid materials for distributed feedback laser
resonators by two-photon polymerization, Opt. Express 17(4),
2500–2507 (2009),
http://dx.doi.org/10.1364/OE.17.002500
[14] M.B. Christiansen, M. Scholer, and A. Kristensen, Integration
of active and passive polymer optics, Opt. Express 15(7),
3931–3939 (2007),
http://dx.doi.org/10.1364/OE.15.003931
[15] A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis,
and B.N. Chichkov, Shrinkage of microstructures produced by
two-photon polymerization of Zr-based hybrid photosensitive
materials, Opt. Express 17(4), 2143–2148 (2009),
http://dx.doi.org/10.1364/OE.15.003931
[16] T. Baldacchini, M. Zimmerley, E.O. Potma, and R. Zadoyan,
Chemical mapping of three-dimensional microstructures fabricated by
two-photon polymerization using CARS microscopy, Proc. SPIE 7201,
72010Q (2009),
http://dx.doi.org/10.1117/12.808269
[17] M. Malinauskas, P. Danilevičius, D. Baltriukienė, M.
Rutkauskas, A. Žukauskas, Ž. Kairytė, G. Bičkauskaitė, V. Purlys, D.
Paipulas, V. Bukelskienė, and R. Gadonas, 3D artificial polymeric
scaffolds for stem cell growth fabricated by femtosecond laser,
Lithuanian J. Phys. 50, 75–82 (2010),
http://dx.doi.org/10.3952/lithjphys.50121
[18] M. Gersborg-Hansen and A. Kristensen, Tunability of optofluidic
distributed feedback dye laser, Opt. Express 15(1), 137–142
(2006),
http://dx.doi.org/10.1364/OE.15.000137
[19] C.R. Mendonca, D.S. Correa, M. Marlow, T. Voss, P. Tayalia, and
E. Mazur, Three-dimensional fabrication of optically active
microstructures containing an electroluminescent polymer, Appl.
Phys. Lett. 95, 113309 (2009),
http://dx.doi.org/10.1063/1.3232207