[PDF]    http://dx.doi.org/10.3952/lithjphys.50114

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 7–15 (2010)


MAGNETOOPTICS OF OPAL CRYSTALS MODIFIED BY COBALT NANOPARTICLES
I. Šimkienėa, A. Rėzaa, A. Kindurysa, V. Bukauskasa, J. Babonasa, R. Szymczakb, P. Aleshkevychb, M. Franckevičiusc, and R. Vaišnorasc
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: jgb@pfi.lt
bInstitute of Physics of the Polish Academy of Sciences, Lotników 32/46, PL-02668 Warsaw, Poland
cVilnius Pedagogical University, Studentų 39, LT-08106 Vilnius, Lithuania

Received 15 July 2009; accepted 19 March 2010

Optical and magnetooptical properties of opal photonic crystals modified by Co nanoparticles have been investigated by modulation spectroscopy technique in the visible spectral range from 400 to 800 nm. The Co nanoparticles of 1 to 8 nm in size were formed by means of chemical reduction reaction inside synthetic opal crystals composed of regularly close-packed SiO2 spheres of diameter 250–300 nm. As it was estimated from the spectral shift of the stop band of photonic crystals, Co nanoparticles occupied up to several percent of void volume in opal crystal lattice. In the Faraday configuration, external magnetic field induced the change in optical transmission normalized to sample thickness 1 cm and magnetic field 1 T equal to 0.10–0.35 for Co-modified opal crystals in the spectral range under consideration. The fabricated hybrid structures can be considered as a possible prototype of magnetophotonic crystals.
Keywords: magnetophotonic crystals, modulation spectroscopy
PACS: 42.70.Qs, 78.20.Ls


OPALO KRISTALŲ SU Co NANODALELĖMIS MAGNETOOPTIKA
I. Šimkienėa, A. Rėzaa, A. Kindurysa, V. Bukauskasa, J. Babonasa, R. Szymczakb, P. Aleshkevychb, M. Franckevičiusc, R. Vaišnorasc
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bLenkijos MA Fizikos institutas, Varšuva, Lenkija
cVilniaus pedagoginis universitetas, Vilnius, Lietuva

Taikant moduliacinės spektroskopijos metodiką, tirti opalo fotoninių kristalų su Co nanodalelėmis optiniai ir magnetooptiniai spektrai regimojo spektro srityje nuo 400 iki 800 nm. Sintetiniuose opalo kristaluose, sudarytuose iš glaudžios sanklodos tvarka išsidėsčiusių 250–300 nm skersmens SiO2 sferų, cheminės redukcijos reakcijose buvo suformuotos nuo 1 iki 8 nm dydžio Co nanodalelės. Iš fotoninio kristalo užtvarinės juostos poslinkio spektre nustatyta, kad Co nanodalelės užpildo kelis procentus opalo kristalo gardelės ertmių. Faradėjaus konfigūracijos opalo kristaluose su Co nanodalelėmis išorinis magnetinis laukas tirtoje spektro srityje sukelia optinio pralaidumo pokytį. Esant 1 cm storio bandiniui ir 1 T magnetiniam laukui, jis lygus 0,10–0,35. Pagaminti hibridiniai dariniai gali būti nagrinėjami kaip magnetofotoninių kristalų prototipai.


References / Nuorodos


[1] S.G. Johnson and J.D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Springer, 2002),
http://www.amazon.com/gp/reader/0792376099/
[2] M. Inoue, H. Uchida, K. Nishimura, and P.B. Lim, Magnetophotonic crystals – a novel magneto-optic material with artificial periodic structures, J. Mater. Chem. 16, 678–684 (2006),
http://dx.doi.org/10.1039/b511434a
[3] R. Fujikawa, A.V. Baryshev, A.B. Khanikaev, H. Uchida, P.B. Lim, and M. Inoue, Fabrication and optical properties of three-dimensional magnetophotonic heterostructures, IEEE Trans. Magn. 42, 3075–3077 (2006),
http://dx.doi.org/10.1109/TMAG.2006.879620
[4] A.V. Baryshev, T. Kodama, K. Nishimura, H. Uchida, and M. Inoue, Three-dimensional magnetophotonic crystals based on artificial opals, J. Appl. Phys. 95, 7336–7338 (2004),
http://dx.doi.org/10.1063/1.1676036
[5] R. Fujikawa, A.V. Baryshev, H. Uchida, P.B. Lim, and M. Inoue, Fabrication of three-dimensional magnetophotonic crystals: Opal thin films filled with Bi:YIG, J. Magn. 11, 147–150 (2006),
http://www.dbpia.co.kr/view/ar_view.asp?arid=760265
[6] V.V. Pavlov, P.A. Usachev, R.V. Pisarev, D.A. Kurdyukov, S.F. Kaplan, A.V. Kimel, A. Kirilyuk, and Th. Rasing, Enhancement of optical and magnetooptical effects in three-dimensional opal/Fe3O4 magnetic photonic crystals, Appl. Phys. Lett. 93, 072502 (2008),
http://dx.doi.org/10.1063/1.2973150
[7] V.V. Pavlov, P.A. Usachev, R.V. Pisarev, D.A. Kurdyukov, S.F. Kaplan, A.V. Kimel, A. Kirilyuk, and Th. Rasing, Optical study of three-dimensional magnetic photonic crystals opal/Fe3O4, J. Magn. Magn. Mater. 321, 840–842 (2009),
http://dx.doi.org/10.1016/j.jmmm.2008.11.065
[8] T. Kodama, K. Nishimura, A.V. Baryshev, H. Uchida, and M. Inoue, Opal photonic crystals impregnated with magnetite, Phys. Status Solidi B 241, 1597–1600 (2004),
http://dx.doi.org/10.1002/pssb.200304630
[9] C. Koerdt, G.L.J.A. Rikken, and E.P. Petrov, Faraday effect of photonic crystals, Appl. Phys. Lett. 82, 1538–1540 (2003),
http://dx.doi.org/10.1063/1.1558954
[10] A. Rėza, I. Šimkienė, G.J. Babonas, R. Vaišnoras, D. Kurdyukov, and V. Golubev, Magnetic circular dichroism of opal crystals infiltrated with iron porphyrin, Lithuanian J. Phys. 48, 319–323 (2008),
http://dx.doi.org/10.3952/lithjphys.48404
[11] X. Xu, S.A. Majetich, and S.A. Asher, Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals, J. Am. Chem. Soc. 124, 13864–13868 (2002),
http://dx.doi.org/10.1021/ja026901k
[12] A. Gupta, A.Yu. Ganin, P. Sharma, V. Agnihotri, L.M. Belova, K.V. Rao, M.E. Kozlov, A.A. Zakhidov, and R.H. Baughman, Synthetic magnetic opals, Pramana 58, 1051–1059 (2002),
http://dx.doi.org/10.1007/s12043-002-0216-z
[13] H. Bönnemann and R.M. Richards, Nanoscopic metal particles – synthetic methods and potential applications, Eur. J. Inorg. Chem. 2001, 2455–2480 (2001),
http://dx.doi.org/10.1002/1099-0682%28200109%292001:10%3C2455::AID-EJIC2455%3E3.0.CO;2-Z
[14] H. Hofmeister, P.-T. Miclea, and W. Mörke, Metal nanoparticle coating of oxide nanospheres for core-shell structures, Part. Part. Syst. Char. 19, 359–365 (2002),
http://dx.doi.org/10.1002/1521-4117%28200211%2919:5%3C359::AID-PPSC359%3E3.0.CO;2-B
[15] G.N. Glavee, K.J. Klabunde, C.M. Sorensen, and G.C. Hadjipanayis, Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride or borate particles, Langmuir 9, 162–169 (1993),
http://dx.doi.org/10.1021/la00025a034
[16] C. Petit and M.P. Pileni, Physical properties of self-assembled nanosized cobalt particles, Appl. Surf. Sci. 162–163, 519–528 (2000),
http://dx.doi.org/10.1016/S0169-4332%2800%2900243-9
[17] G. Babonas and G. Pukinskas, Issledovanie opticheskikh i magnitoopticheskikh svoistv poluprovodnikov metodom spektral’noi ellipsometrii (Studies of Optical and Magnetooptical Properties of Semiconductors by Modulation Spectroscopy Technique), preprint No 23 (Semiconductor Physics Institute, Vilnius, 1988) [in Russian]
[18] J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, 2000),
http://www.amazon.com/reader/0198511655
[19] A. Reza, R. Tamasevicius, J. Babonas, Z. Balevičius, V. Vaicikauskas, V. Golubev, and D. Kurdyukov, Ellipsometric studies of opal crystals, Phys. Status Solidi C 5, 1391–1394 (2008),
http://dx.doi.org/10.1002/pssc.200777739
[20] J. Sabataityte, I. Simkiene, G.-J. Babonas, A. Reza, M. Baran, R. Szymczak, R. Vaisnoras, L. Rasteniene, V. Golubev, and D. Kurdyukov, Physical studies of porphyrin-infiltrated opal crystals, Mater. Sci. Eng. C 27, 985–989 (2007),
http://dx.doi.org/10.1016/j.msec.2006.09.048
[21] A. Rėza, R. Vaišnoras, C. Lopez, D. Golmayo, and J. Babonas, Optical anisotropy of synthetic opals, in: 38-oji Lietuvos nacionalinė fizikos konferencija, Programa ir pranešimu˛ tezės, Vilnius, 2009 m. birželio 8–10 d. (38th Lithuanian National Conference in Physics, Program and Abstracts, June 8–10, 2009) (Vilnius, 2009) p. 250
[22] G.A. Babonas and A.A. Reza, Izmerenie piezogiratsionnykh konstant kubicheskikh kristallov (Measurements of piezogyration constants in cubic crystals), Kristallografiya [Sov. Phys. Crystallogr.] 27, 932–935 (1982) [in Russian]
[23] V. Salgueirino-Maceira, M.A. Correa-Duarte, M. Spasova, L.M. Liz-Marzan, and M. Farle, Composite silica spheres with magnetic and luminescent functionalities, Adv. Funct. Mater. 16, 509–514 (2006),
http://dx.doi.org/10.1002/adfm.200500565
[24] Y.-W. Zhao, R.K. Zheng, X.X. Zhang, and J.Q. Xiao, A simple method to prepare uniform Co nanoparticles, IEEE Trans. Magn. 39, 2764–2766 (2006),
http://dx.doi.org/10.1109/TMAG.2003.815592
[25] C.M. Sorensen, Magnetism, in: Nanoscale Materials in Chemistry, ed. J.K. Klabunde (Wiley–Interscience, New York, 2001) pp. 169–220,
http://www.amazon.com/gp/reader/0470222700/
[26] I.S. Edelman, O.V. Vorotynova, V.A. Seredkin, V.N. Zabluda, R.D. Ivantsov, Yu.I. Gatiyatova, V.F. Valeev, R.I. Khaĩbullin, and A.L. Stepanov, Magnetic and magneto-optical properties of ion-synthesized cobalt nanoparticles in silicon oxide, Phys. Solid State 50, 2088–2094 (2008),
http://dx.doi.org/10.1134/S1063783408110140
[27] M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge, W.A. Hines, and J.I. Budnick, Structure and magnetic properties of SiO2-coated Co nanoparticles, J. Appl. Phys. 92, 491–495 (2002),
http://dx.doi.org/10.1063/1.1483393
[28] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995),
http://www.amazon.com/gp/reader/3642081916/
[29] T.K. Xia, P.M. Hui, and D. Stroud, Theory of Faraday rotation in granular magnetic materials, J. Appl. Phys. 67, 2736–2741 (1990),
http://dx.doi.org/10.1063/1.345438
[30] O. Yeshchenko, I. Dmitruk, A. Alexeenko, A. Dmitruk, and V. Tinkov, Optical properties of sol-gel fabricated Co/SiO2 nanocomposites, Physica E 41, 60–65 (2008),
http://dx.doi.org/10.1016/j.physe.2008.06.003
[31] V.A. Kosobukin, Optics of circularly polarized light waves in one-dimensional magneto-photonic crystals: Theory, Solid State Commun. 139, 92–96 (2006),
http://dx.doi.org/10.1016/j.ssc.2006.05.024
[32] Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology, vol. 15, subvolume b, “Optical properties of pure metals and binary alloys” (Springer-Verlag, Berlin, 1985)
[33] M. Inoue, K. Arai, T. Fujii, and M. Abe, Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers, J. Appl. Phys. 83, 6768–6770 (1998),
http://dx.doi.org/10.1063/1.367789
[34] A.V. Baryshev, T. Kodama, K. Nishimura, H. Uchida, and M. Inoue, Magneto-optical properties of three-dimensional magnetophotonic crystals, IEEE Trans. Magn. 40, 2829–2831 (2004),
http://dx.doi.org/10.1109/TMAG.2004.832282