[PDF]
http://dx.doi.org/10.3952/lithjphys.50114
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 7–15 (2010)
MAGNETOOPTICS OF OPAL CRYSTALS
MODIFIED BY COBALT NANOPARTICLES
I. Šimkienėa, A. Rėzaa, A. Kindurysa,
V. Bukauskasa, J. Babonasa, R. Szymczakb,
P. Aleshkevychb, M. Franckevičiusc, and R.
Vaišnorasc
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: jgb@pfi.lt
bInstitute of Physics of the Polish Academy of
Sciences, Lotników 32/46, PL-02668 Warsaw, Poland
cVilnius Pedagogical University, Studentų 39,
LT-08106 Vilnius, Lithuania
Received 15 July 2009; accepted 19
March 2010
Optical and magnetooptical
properties of opal photonic crystals modified by Co nanoparticles
have been investigated by modulation spectroscopy technique in the
visible spectral range from 400 to 800 nm. The Co nanoparticles of
1 to 8 nm in size were formed by means of chemical reduction
reaction inside synthetic opal crystals composed of regularly
close-packed SiO2 spheres of diameter 250–300 nm. As it
was estimated from the spectral shift of the stop band of photonic
crystals, Co nanoparticles occupied up to several percent of void
volume in opal crystal lattice. In the Faraday configuration,
external magnetic field induced the change in optical transmission
normalized to sample thickness 1 cm and magnetic field 1 T equal
to 0.10–0.35 for Co-modified opal crystals in the spectral range
under consideration. The fabricated hybrid structures can be
considered as a possible prototype of magnetophotonic crystals.
Keywords: magnetophotonic crystals,
modulation spectroscopy
PACS: 42.70.Qs, 78.20.Ls
OPALO KRISTALŲ SU Co
NANODALELĖMIS MAGNETOOPTIKA
I. Šimkienėa, A. Rėzaa, A. Kindurysa,
V. Bukauskasa, J. Babonasa, R. Szymczakb,
P. Aleshkevychb, M. Franckevičiusc, R.
Vaišnorasc
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bLenkijos MA Fizikos institutas, Varšuva,
Lenkija
cVilniaus pedagoginis universitetas, Vilnius,
Lietuva
Taikant moduliacinės spektroskopijos metodiką,
tirti opalo fotoninių kristalų su Co nanodalelėmis optiniai ir
magnetooptiniai spektrai regimojo spektro srityje nuo 400 iki 800
nm. Sintetiniuose opalo kristaluose, sudarytuose iš glaudžios
sanklodos tvarka išsidėsčiusių 250–300 nm skersmens SiO2
sferų, cheminės redukcijos reakcijose buvo suformuotos nuo 1 iki 8
nm dydžio Co nanodalelės. Iš fotoninio kristalo užtvarinės juostos
poslinkio spektre nustatyta, kad Co nanodalelės užpildo kelis
procentus opalo kristalo gardelės ertmių. Faradėjaus
konfigūracijos opalo kristaluose su Co nanodalelėmis išorinis
magnetinis laukas tirtoje spektro srityje sukelia optinio
pralaidumo pokytį. Esant 1 cm storio bandiniui ir 1 T magnetiniam
laukui, jis lygus 0,10–0,35. Pagaminti hibridiniai dariniai gali
būti nagrinėjami kaip magnetofotoninių kristalų prototipai.
References / Nuorodos
[1] S.G. Johnson and J.D. Joannopoulos, Photonic Crystals: The
Road from Theory to Practice (Springer, 2002),
http://www.amazon.com/gp/reader/0792376099/
[2] M. Inoue, H. Uchida, K. Nishimura, and P.B. Lim, Magnetophotonic
crystals – a novel magneto-optic material with artificial periodic
structures, J. Mater. Chem. 16, 678–684 (2006),
http://dx.doi.org/10.1039/b511434a
[3] R. Fujikawa, A.V. Baryshev, A.B. Khanikaev, H. Uchida, P.B. Lim,
and M. Inoue, Fabrication and optical properties of
three-dimensional magnetophotonic heterostructures, IEEE Trans.
Magn. 42, 3075–3077 (2006),
http://dx.doi.org/10.1109/TMAG.2006.879620
[4] A.V. Baryshev, T. Kodama, K. Nishimura, H. Uchida, and M. Inoue,
Three-dimensional magnetophotonic crystals based on artificial
opals, J. Appl. Phys. 95, 7336–7338 (2004),
http://dx.doi.org/10.1063/1.1676036
[5] R. Fujikawa, A.V. Baryshev, H. Uchida, P.B. Lim, and M. Inoue,
Fabrication of three-dimensional magnetophotonic crystals: Opal thin
films filled with Bi:YIG, J. Magn. 11, 147–150 (2006),
http://www.dbpia.co.kr/view/ar_view.asp?arid=760265
[6] V.V. Pavlov, P.A. Usachev, R.V. Pisarev, D.A. Kurdyukov, S.F.
Kaplan, A.V. Kimel, A. Kirilyuk, and Th. Rasing, Enhancement of
optical and magnetooptical effects in three-dimensional opal/Fe3O4
magnetic photonic crystals, Appl. Phys. Lett. 93, 072502
(2008),
http://dx.doi.org/10.1063/1.2973150
[7] V.V. Pavlov, P.A. Usachev, R.V. Pisarev, D.A. Kurdyukov, S.F.
Kaplan, A.V. Kimel, A. Kirilyuk, and Th. Rasing, Optical study of
three-dimensional magnetic photonic crystals opal/Fe3O4,
J. Magn. Magn. Mater. 321, 840–842 (2009),
http://dx.doi.org/10.1016/j.jmmm.2008.11.065
[8] T. Kodama, K. Nishimura, A.V. Baryshev, H. Uchida, and M. Inoue,
Opal photonic crystals impregnated with magnetite, Phys. Status
Solidi B 241, 1597–1600 (2004),
http://dx.doi.org/10.1002/pssb.200304630
[9] C. Koerdt, G.L.J.A. Rikken, and E.P. Petrov, Faraday effect of
photonic crystals, Appl. Phys. Lett. 82, 1538–1540 (2003),
http://dx.doi.org/10.1063/1.1558954
[10] A. Rėza, I. Šimkienė, G.J. Babonas, R. Vaišnoras, D. Kurdyukov,
and V. Golubev, Magnetic circular dichroism of opal crystals
infiltrated with iron porphyrin, Lithuanian J. Phys. 48,
319–323 (2008),
http://dx.doi.org/10.3952/lithjphys.48404
[11] X. Xu, S.A. Majetich, and S.A. Asher, Mesoscopic monodisperse
ferromagnetic colloids enable magnetically controlled photonic
crystals, J. Am. Chem. Soc. 124, 13864–13868 (2002),
http://dx.doi.org/10.1021/ja026901k
[12] A. Gupta, A.Yu. Ganin, P. Sharma, V. Agnihotri, L.M. Belova,
K.V. Rao, M.E. Kozlov, A.A. Zakhidov, and R.H. Baughman, Synthetic
magnetic opals, Pramana 58, 1051–1059 (2002),
http://dx.doi.org/10.1007/s12043-002-0216-z
[13] H. Bönnemann and R.M. Richards, Nanoscopic metal particles –
synthetic methods and potential applications, Eur. J. Inorg. Chem. 2001,
2455–2480 (2001),
http://dx.doi.org/10.1002/1099-0682%28200109%292001:10%3C2455::AID-EJIC2455%3E3.0.CO;2-Z
[14] H. Hofmeister, P.-T. Miclea, and W. Mörke, Metal nanoparticle
coating of oxide nanospheres for core-shell structures, Part. Part.
Syst. Char. 19, 359–365 (2002),
http://dx.doi.org/10.1002/1521-4117%28200211%2919:5%3C359::AID-PPSC359%3E3.0.CO;2-B
[15] G.N. Glavee, K.J. Klabunde, C.M. Sorensen, and G.C.
Hadjipanayis, Borohydride reduction of cobalt ions in water.
Chemistry leading to nanoscale metal, boride or borate particles,
Langmuir 9, 162–169 (1993),
http://dx.doi.org/10.1021/la00025a034
[16] C. Petit and M.P. Pileni, Physical properties of self-assembled
nanosized cobalt particles, Appl. Surf. Sci. 162–163,
519–528 (2000),
http://dx.doi.org/10.1016/S0169-4332%2800%2900243-9
[17] G. Babonas and G. Pukinskas, Issledovanie opticheskikh i
magnitoopticheskikh svoistv poluprovodnikov metodom spektral’noi
ellipsometrii (Studies of Optical and Magnetooptical
Properties of Semiconductors by Modulation Spectroscopy Technique),
preprint No 23 (Semiconductor Physics Institute, Vilnius, 1988) [in
Russian]
[18] J.F. Nye, Physical Properties of Crystals: Their
Representation by Tensors and Matrices (Oxford University
Press, 2000),
http://www.amazon.com/reader/0198511655
[19] A. Reza, R. Tamasevicius, J. Babonas, Z. Balevičius, V.
Vaicikauskas, V. Golubev, and D. Kurdyukov, Ellipsometric studies of
opal crystals, Phys. Status Solidi C 5, 1391–1394 (2008),
http://dx.doi.org/10.1002/pssc.200777739
[20] J. Sabataityte, I. Simkiene, G.-J. Babonas, A. Reza, M. Baran,
R. Szymczak, R. Vaisnoras, L. Rasteniene, V. Golubev, and D.
Kurdyukov, Physical studies of porphyrin-infiltrated opal crystals,
Mater. Sci. Eng. C 27, 985–989 (2007),
http://dx.doi.org/10.1016/j.msec.2006.09.048
[21] A. Rėza, R. Vaišnoras, C. Lopez, D. Golmayo, and J. Babonas,
Optical anisotropy of synthetic opals, in: 38-oji Lietuvos
nacionalinė fizikos konferencija, Programa ir pranešimu˛ tezės,
Vilnius, 2009 m. birželio 8–10 d. (38th Lithuanian National
Conference in Physics, Program and Abstracts, June 8–10, 2009)
(Vilnius, 2009) p. 250
[22] G.A. Babonas and A.A. Reza, Izmerenie piezogiratsionnykh
konstant kubicheskikh kristallov (Measurements of piezogyration
constants in cubic crystals), Kristallografiya [Sov. Phys.
Crystallogr.] 27, 932–935 (1982) [in Russian]
[23] V. Salgueirino-Maceira, M.A. Correa-Duarte, M. Spasova, L.M.
Liz-Marzan, and M. Farle, Composite silica spheres with magnetic and
luminescent functionalities, Adv. Funct. Mater. 16, 509–514
(2006),
http://dx.doi.org/10.1002/adfm.200500565
[24] Y.-W. Zhao, R.K. Zheng, X.X. Zhang, and J.Q. Xiao, A simple
method to prepare uniform Co nanoparticles, IEEE Trans. Magn. 39,
2764–2766 (2006),
http://dx.doi.org/10.1109/TMAG.2003.815592
[25] C.M. Sorensen, Magnetism, in: Nanoscale Materials in
Chemistry, ed. J.K. Klabunde (Wiley–Interscience, New York,
2001) pp. 169–220,
http://www.amazon.com/gp/reader/0470222700/
[26] I.S. Edelman, O.V. Vorotynova, V.A. Seredkin, V.N. Zabluda,
R.D. Ivantsov, Yu.I. Gatiyatova, V.F. Valeev, R.I. Khaĩbullin, and
A.L. Stepanov, Magnetic and magneto-optical properties of
ion-synthesized cobalt nanoparticles in silicon oxide, Phys. Solid
State 50, 2088–2094 (2008),
http://dx.doi.org/10.1134/S1063783408110140
[27] M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge, W.A. Hines, and
J.I. Budnick, Structure and magnetic properties of SiO2-coated
Co nanoparticles, J. Appl. Phys. 92, 491–495 (2002),
http://dx.doi.org/10.1063/1.1483393
[28] U. Kreibig and M. Vollmer, Optical Properties of Metal
Clusters (Springer, Berlin, 1995),
http://www.amazon.com/gp/reader/3642081916/
[29] T.K. Xia, P.M. Hui, and D. Stroud, Theory of Faraday rotation
in granular magnetic materials, J. Appl. Phys. 67, 2736–2741
(1990),
http://dx.doi.org/10.1063/1.345438
[30] O. Yeshchenko, I. Dmitruk, A. Alexeenko, A. Dmitruk, and V.
Tinkov, Optical properties of sol-gel fabricated Co/SiO2
nanocomposites, Physica E 41, 60–65 (2008),
http://dx.doi.org/10.1016/j.physe.2008.06.003
[31] V.A. Kosobukin, Optics of circularly polarized light waves in
one-dimensional magneto-photonic crystals: Theory, Solid State
Commun. 139, 92–96 (2006),
http://dx.doi.org/10.1016/j.ssc.2006.05.024
[32] Landolt-Börnstein. Numerical Data and Functional
Relationships in Science and Technology, vol. 15, subvolume b,
“Optical properties of pure metals and binary alloys”
(Springer-Verlag, Berlin, 1985)
[33] M. Inoue, K. Arai, T. Fujii, and M. Abe, Magnetooptical
properties of one-dimensional photonic crystals composed of magnetic
and dielectric layers, J. Appl. Phys. 83, 6768–6770 (1998),
http://dx.doi.org/10.1063/1.367789
[34] A.V. Baryshev, T. Kodama, K. Nishimura, H. Uchida, and M.
Inoue, Magneto-optical properties of three-dimensional
magnetophotonic crystals, IEEE Trans. Magn. 40, 2829–2831
(2004),
http://dx.doi.org/10.1109/TMAG.2004.832282