[PDF]
http://dx.doi.org/10.3952/lithjphys.50115
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 135–140 (2010)
SELF-POLYMERIZATION OF
NANO-FIBRES AND NANO-MEMBRANES INDUCED BY TWO-PHOTON ABSORPTION
M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V.
Purlys, and R. Gadonas
Department of Quantum Electronics and Laser Research Centre,
Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: mangirdas.malinauskas@ff.vu.lt
Received 20 December 2009; revised
8 March 2010; accepted 19 March 2010
Laser Two-Photon Polymerization
(LTPP) is a technique enabling formation of 3D nanostructures in
photosensitive resins with sub-wavelength resolution and unmatched
flexibility. However, controllable fabrication of sub-100 nm
features by this technique is still a challenge.
Self-polymerization, also known as non-local polymerization, is
considered to be promising in this ultra-high resolution structure
formation. Recent observation of fragile self-polymerized fibres
with diameter within tens of nanometres (nano-fibres) encourages
the use of self-polymerization to produce nanometre scale
structures other than fibres and to define the conditions for
controllable fabrication. “X”-shaped polymerized supports are used
as rigid structures to produce suspended self-polymerized features
of different nature (shape and dimensionality) in-between the
walls of “X”. By laser writing lines parallel to the substrate and
perpendicular to the long symmetry axis of “X” under different
conditions, self-formation of periodic nano-fibres (diameter
<100 nm) and nano-membranes is induced in acrylate photopolymer
AKRE37. Depending on introduced exposure dose, spatial density
threshold behaviour of non-structure, nano-fibre, nano-membrane,
and laser written lines is deduced. Preliminary model including
laser intensity, concentration of radicals, collapse force, and
distance between supports as variables having threshold effect on
final self-polymerized structure’s geometry is proposed to explain
non-local self-polymerization.
Keywords: femtosecond laser,
multi-photon absorption polymerization, acrylate photopolymer,
self-assembly, nanotechnology
PACS: 82.50.Pt, 81.16.Dn, 81.05.Zx
DVIFOTONE SUGERTIMI INDUKUOTA
NANOGIJŲ IR NANOMEMBRANŲ SAVIPOLIMERIZACIJA
M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V.
Purlys, R. Gadonas
Vilniaus universitetas, Vilnius, Lietuva
Aštriai sufokusuoto pluošto židinyje vyksta
dvifotonė sugertis, kuri inicijuoja fotopolimere lokalizuotą
polimerizacijos reakciją. Po ryškinimo tirpiklyje išlieka tik
eksponuota medžiagos dalis, todėl galima gaminti trimates
mikrostruktūras. Pastaruoju metu pastebėta gijos formos darinių
savipolimerizacija. Tokios nanostruktūros savaime susidaro tarp
tvirtų polimerinių atramų, kai atstumas tarp jų yra mažesnis už
kritinį (Dkr ~ 1 μm). Šiame darbe
tiriamas ir aiškinamas nanogijų (skersmuo <100 nm) ir
nanomembranų (storis 100 nm) savipolimerizacijos reiškinys
akrilatiniame fotopolimere AKRE37. Sufokusuoto femtosekundinio
lazerio (80 fs, 800 nm, 80 MHz) pluoštu generuojami radikalai tarp
suformuotos „X“ pavidalo atramos sienų rašant lygiagrečias
linijas, kai intensyvumas yra artimas slenkstiniam polimerizacijos
intensyvumui. Nustatytos sąlygos (vidutinė lazerio galia ir linijų
tankis), reikalingos savaime susipolimerizavusiems dariniams
(nanogijoms ir nanomembranoms) gauti. Pasiūlytas apibendrintasis
modelis, nusakantis savipolimerizacijos sąlygas – lazerio šviesos
intensyvumą, radikalų koncentraciją, darinio tvirtumą ir kritinį
atstumą tarp atramų.
References / Nuorodos
[1] H.-B. Sun and S. Kawata, Two-photon photopolymerization and 3D
lithographic microfabrication, Adv. Polymer Sci. 170,
169–273 (2004),
http://dx.doi.org/10.1007/b94405
[2] K. Takada, H.-B. Sun, and S. Kawata, The study on spatial
resolution in two-photon induced polymerization, Proc. SPIE 6110,
61100A (2006),
http://dx.doi.org/10.1117/12.645221
[3] S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, and H. Misawa,
Two-photon lithography of nanorods in SU-8 photoresist,
Nanotechnology 16, 846–849 (2005),
http://dx.doi.org/10.1088/0957-4484/16/6/039
[4] S.-H. Park, T.-W. Lim, D.-Y. Yang, N.-C. Cho, and K.-S. Lee,
Fabrication of a bunch of sub-30-nm nanofibers inside microchannels
using photopolymerization via a long exposure technique, Appl. Phys.
Lett. 89, 173133 (2006),
http://dx.doi.org/10.1063/1.2363956
[5] D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan,
Reduction in feature size of two-photon polymerization using SCR500,
Appl. Phys. Lett. 90, 071106 (2007),
http://dx.doi.org/10.1063/1.2535504
[6] M. Malinauskas, H. Gilbergs, V. Purlys, A. Žukauskas, M.
Rutkauskas, and R. Gadonas, Femtosecond laser-induced two-photon
photopolymerization for structuring of micro-optical and photonic
devices, Proc. SPIE 7366, 736622 (2009),
http://dx.doi.org/10.1117/12.821776
[7] H.-B. Sun, K. Takada, and S. Kawata, Elastic force analysis of
functional polymer submicron oscillators, Appl. Phys. Lett. 79,
3173–3175 (2001),
http://dx.doi.org/10.1063/1.1418024
[8] J.P. Fouassier and J.F. Rabek, Lasers in Polymer Science and
Technology: Applications, Vol. 1 (CRC Press, Inc., Boca Raton,
Fl, 1990),
http://www.amazon.com/gp/reader/0849348447/
[9] S.-H. Park, K.H. Kim, T. W. Lim, D.-Y. Yang, and K.-S. Lee,
Investigation of three-dimensional pattern collapse owing to surface
tension using an imperfection finite element model, Microelectron.
Eng. 85, 432–439 (2008),
http://dx.doi.org/10.1016/j.mee.2007.08.003