[PDF]    http://dx.doi.org/10.3952/lithjphys.50118

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 403–404 (2010)


DOUBLE-PULSE LASER-INDUCED BREAKDOWN SPECTROSCOPY WITH 1030 AND 257.5 nm WAVELENGTH FEMTOSECOND LASER PULSES
O. Balachninaitė, A. Baškevičius, K. Stankevičiūtė, K. Kuršelis, and V. Sirutkaitis
Laser Research Centre, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: ona.balachninaite@ff.vu.lt

Received 20 October 2009; revised 17 March 2010; accepted 19 March 2010

Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) studies and the comparison with the single-pulse experiments were performed on the steel sample. Two harmonics of the femtosecond Yb:KGW laser at 1030 and 257.5 nm were combined in the collinear beam geometry to carry out double-pulse LIBS experiments at atmospheric pressure in air. The influence of the delay between the two (NIR pulse was delayed in regard to UV pulse) laser pulses on the LIBS signal intensity was investigated. The inter-pulse delay times were in the range from 0 to 200 ps. In the delay range from 0 to 40 ps the LIBS plasma emission intensity increased steadily and in the range from 40 to 200 ps (maximum inter-pulse delay investigated) the plasma lines’ emission intensity remained almost constant. LIBS signal intensity increased 3–5 times in comparison with the single pulse case when an optimum inter-pulse delay between the two ablating pulses was used.
Keywords: laser-induced breakdown spectroscopy (LIBS), double pulse, laser plasma, laser ablation by femtosecond pulses
PACS: 42.62.Fi, 52.50.Jm, 52.38.Mf


DVIGUBO IMPULSO LAZERIU INDUKUOTOS PLAZMOS SPEKTROSKOPINIAI TYRIMAI ŽADINIMUI NAUDOJANT 1030 IR 257,5 nm BANGOS ILGIO FEMTOSEKUNDINIUS IMPULSUS
O. Balachninaitė, A. Baškevičius, K. Stankevičiūtė, K. Kuršelis, V. Sirutkaitis
Vilniaus universitetas, Vilnius, Lietuva

Pristatomi lazeriu indukuoto optinio pažeidimo medžiagų tyrimai naudojant dvigubus femtosekundinius lazerio impulsus. Įvertinami pagrindiniai dėsningumai ir lyginima su pavieniu impulsu gautais rezultatais. Plazma ant bandinio (plieno plokštelės) paviršiaus buvo indukuojama lygiagrečiai fokusuojant femtosekundinio Yb:KGV lazerio pagrindinės 1030 nm ir ketvirtosios 257,5 nm harmonikos spinduliuotę. Buvo stebimas dvigubo impulso lazeriu indukuotos plazmos spektrinių linijų intensyvumo kitimas esant skirtingiems impulsų tarpams. Jie buvo keičiami nuo 0 iki 200 ps. Esant impulsų tarpams nuo 0 iki 40 ps, stebimas staigus lazeriu indukuotos plazmos emisijos linijų intensyvumo augimas, o nuo 40 iki 200 ps emisijos linijų intensyvumas kinta nežymiai. Nustatyta, kad, esant optimaliam tarpui tarp dviejų impulsų, plazmos emisijos linijų intensyvumas padidėja 3–5 kartus, palyginti su lazeriu indukuotos plazmos spektroskopiniais tyrimais, kai plazmai sukurti naudojami pavieniai impulsai.


References / Nuorodos


[1] Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, eds. A.W. Miziolek, V. Palleschi, and I. Schechter (Cambridge University Press, Cambridge, UK, 2006),
http://www.amazon.com/gp/reader/0521071003/
[2] C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, Quantification of the intensity enhancements for the double-pulse laser induced breakdown spectroscopy in the orthogonal beam geometry, Spectrochim. Acta B 60, 265–276 (2005),
http://dx.doi.org/10.1016/j.sab.2005.01.006
[3] P.A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration, Spec- trochim. Acta B 60, 1392–1401 (2004),
http://dx.doi.org/10.1016/j.sab.2005.08.007
[4] F. Colao, V. Lazic, R. Fantoni, and S. Pershin, A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples, Spectrochim. Acta B 57, 1167–1179 (2002),
http://dx.doi.org/10.1016/S0584-8547%2802%2900058-7
[5] D.N. Stratis, K.L. Eland, and S. Michael Angel, Effect of pulse delay time on a preablation dual-pulse LIBS plasma, Appl. Spectrosc. 55, 1297–1303 (2001),
http://dx.doi.org/10.1366/0003702011953649
[6] D.A. Cremers, L.J. Radziemski, and T.R. Loree, Spectrochemical analysis of liquids using the laser spark, Appl. Spectrosc. 38, 721–729 (1984),
http://dx.doi.org/10.1366/0003702844555034
[7] J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, Reheating of a laser-produced plasma by a second pulse laser, Appl. Spectrosc. 45, 1419–1423 (1991),
http://dx.doi.org/10.1366/0003702914335445
[8] J. Scaffidi, S.M. Angel, and D.A. Cremers, Emission enhancement mechanisms in dual-pulse LIBS, Anal. Chem. 78(1), 24–32 (2006),
http://dx.doi.org/10.1021/ac069342z
[9] D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, and J. Etchepare, Interaction of a laser-produced plume with a second time delayed femtosecond pulse, Appl. Phys. Lett. 86, 071502-1–3 (2005),
http://dx.doi.org/10.1063/1.1864242
[10] S.M. Angel, D.N. Stratis, K.L. Eland, T. Lai, M.A. Berg, and D.M. Gold, LIBS using dual- and ultra-short laser pulses, Fresen. J. Anal. Chem. 369, 320–327 (2001),
http://dx.doi.org/10.1007/s002160000656
[11] V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses, Spectrochim. Acta B 63, 1006–1010 (2008),
http://dx.doi.org/10.1016/j.sab.2008.09.004
[12] O. Samek, A. Kurowski, S. Kittel, S. Kukhlevsky, and R. Hergenröder, Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study, Spectrochim. Acta B 60, 1225–1229 (2005),
http://dx.doi.org/10.1016/j.sab.2005.05.032
[13] P.P. Pronko, Z. Zhang, and P.A. VanRompay, Critical density effects in femtosecond ablation plasma and consequences for high intensity pulsed laser deposition, Appl. Surf. Sci. 208–209, 492–501 (2003),
http://dx.doi.org/10.1016/S0169-4332%2802%2901444-7
[14] A. Semerok and C. Dutouquet, Ultrashort double pulse laser ablation of metals, Thin Solid Films 453–454, 501–505 (2004),
http://dx.doi.org/10.1016/j.tsf.2003.11.115
[15] L. St-Onge, V. Detalle, and M. Sabsabi, Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses, Spectrochim. Acta B 57, 121–135 (2002),
http://dx.doi.org/10.1016/S0584-8547%2801%2900358-5
[16] A. Semerok and P. Mauchien, Ultrafast pulse laser ablation for surface elemental analysis, Rev. Laser Eng. 33, 530–535 (2005)
[17] J.P. Colombier, P. Combis, A. Rosenfeld, I.V. Hertel, E. Audouard, and R. Stoian, Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples, Phys. Rev. B 74, 224106 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.224106
[18] S.S. Mao, X. Mao, R. Greif, and R.E. Russo, Initiation of an early-stage plasma during picosecond laser ablation of solids, Appl. Phys. Lett. 77, 2464–2466 (2000),
http://dx.doi.org/10.1063/1.1318239
[19] A. Melninkaitis, T. Balciunas, A. Vanagas, and V. Sirutkaitis, Time-resolved digital holography: a versatile tool for femtosecond laser-induced damage studies, in: Laser-Induced Damage in Optical Materials: 2009, eds. G.J. Exarhos, V.E. Gruzdev, D. Ristau, M.J. Soileau, and C.J. Stolz, Proc. SPIE 7504, 75040O (2009),
http://dx.doi.org/10.1117/12.836473