[PDF]
http://dx.doi.org/10.3952/lithjphys.50118
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 403–404 (2010)
DOUBLE-PULSE LASER-INDUCED
BREAKDOWN SPECTROSCOPY WITH 1030 AND 257.5 nm WAVELENGTH
FEMTOSECOND LASER PULSES
O. Balachninaitė, A. Baškevičius, K. Stankevičiūtė, K. Kuršelis,
and V. Sirutkaitis
Laser Research Centre, Vilnius University, Saulėtekio 10,
LT-10223 Vilnius, Lithuania
E-mail: ona.balachninaite@ff.vu.lt
Received 20 October 2009; revised
17 March 2010; accepted 19 March 2010
Double-pulse laser-induced
breakdown spectroscopy (DP-LIBS) studies and the comparison with
the single-pulse experiments were performed on the steel sample.
Two harmonics of the femtosecond Yb:KGW laser at 1030 and 257.5 nm
were combined in the collinear beam geometry to carry out
double-pulse LIBS experiments at atmospheric pressure in air. The
influence of the delay between the two (NIR pulse was delayed in
regard to UV pulse) laser pulses on the LIBS signal intensity was
investigated. The inter-pulse delay times were in the range from 0
to 200 ps. In the delay range from 0 to 40 ps the LIBS plasma
emission intensity increased steadily and in the range from 40 to
200 ps (maximum inter-pulse delay investigated) the plasma lines’
emission intensity remained almost constant. LIBS signal intensity
increased 3–5 times in comparison with the single pulse case when
an optimum inter-pulse delay between the two ablating pulses was
used.
Keywords: laser-induced breakdown
spectroscopy (LIBS), double pulse, laser plasma, laser ablation by
femtosecond pulses
PACS: 42.62.Fi, 52.50.Jm, 52.38.Mf
DVIGUBO IMPULSO LAZERIU
INDUKUOTOS PLAZMOS SPEKTROSKOPINIAI TYRIMAI ŽADINIMUI NAUDOJANT
1030 IR 257,5 nm BANGOS ILGIO FEMTOSEKUNDINIUS IMPULSUS
O. Balachninaitė, A. Baškevičius, K. Stankevičiūtė, K. Kuršelis,
V. Sirutkaitis
Vilniaus universitetas, Vilnius, Lietuva
Pristatomi lazeriu indukuoto optinio pažeidimo
medžiagų tyrimai naudojant dvigubus femtosekundinius lazerio
impulsus. Įvertinami pagrindiniai dėsningumai ir lyginima su
pavieniu impulsu gautais rezultatais. Plazma ant bandinio (plieno
plokštelės) paviršiaus buvo indukuojama lygiagrečiai fokusuojant
femtosekundinio Yb:KGV lazerio pagrindinės 1030 nm ir ketvirtosios
257,5 nm harmonikos spinduliuotę. Buvo stebimas dvigubo impulso
lazeriu indukuotos plazmos spektrinių linijų intensyvumo kitimas
esant skirtingiems impulsų tarpams. Jie buvo keičiami nuo 0 iki
200 ps. Esant impulsų tarpams nuo 0 iki 40 ps, stebimas staigus
lazeriu indukuotos plazmos emisijos linijų intensyvumo augimas, o
nuo 40 iki 200 ps emisijos linijų intensyvumas kinta nežymiai.
Nustatyta, kad, esant optimaliam tarpui tarp dviejų impulsų,
plazmos emisijos linijų intensyvumas padidėja 3–5 kartus,
palyginti su lazeriu indukuotos plazmos spektroskopiniais
tyrimais, kai plazmai sukurti naudojami pavieniai impulsai.
References / Nuorodos
[1] Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals
and Applications, eds. A.W. Miziolek, V. Palleschi, and I.
Schechter (Cambridge University Press, Cambridge, UK, 2006),
http://www.amazon.com/gp/reader/0521071003/
[2] C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and
J. Dubessy, Quantification of the intensity enhancements for the
double-pulse laser induced breakdown spectroscopy in the orthogonal
beam geometry, Spectrochim. Acta B 60, 265–276 (2005),
http://dx.doi.org/10.1016/j.sab.2005.01.006
[3] P.A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L.
Pardini, A. Salvetti, and E. Tognoni, Effect of laser pulse energies
in laser induced breakdown spectroscopy in double-pulse
configuration, Spec- trochim. Acta B 60, 1392–1401 (2004),
http://dx.doi.org/10.1016/j.sab.2005.08.007
[4] F. Colao, V. Lazic, R. Fantoni, and S. Pershin, A comparison of
single and double pulse laser-induced breakdown spectroscopy of
aluminum samples, Spectrochim. Acta B 57, 1167–1179 (2002),
http://dx.doi.org/10.1016/S0584-8547%2802%2900058-7
[5] D.N. Stratis, K.L. Eland, and S. Michael Angel, Effect of pulse
delay time on a preablation dual-pulse LIBS plasma, Appl. Spectrosc.
55, 1297–1303 (2001),
http://dx.doi.org/10.1366/0003702011953649
[6] D.A. Cremers, L.J. Radziemski, and T.R. Loree, Spectrochemical
analysis of liquids using the laser spark, Appl. Spectrosc. 38,
721–729 (1984),
http://dx.doi.org/10.1366/0003702844555034
[7] J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax,
Reheating of a laser-produced plasma by a second pulse laser, Appl.
Spectrosc. 45, 1419–1423 (1991),
http://dx.doi.org/10.1366/0003702914335445
[8] J. Scaffidi, S.M. Angel, and D.A. Cremers, Emission enhancement
mechanisms in dual-pulse LIBS, Anal. Chem. 78(1), 24–32
(2006),
http://dx.doi.org/10.1021/ac069342z
[9] D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, and J. Etchepare,
Interaction of a laser-produced plume with a second time delayed
femtosecond pulse, Appl. Phys. Lett. 86, 071502-1–3 (2005),
http://dx.doi.org/10.1063/1.1864242
[10] S.M. Angel, D.N. Stratis, K.L. Eland, T. Lai, M.A. Berg, and
D.M. Gold, LIBS using dual- and ultra-short laser pulses, Fresen. J.
Anal. Chem. 369, 320–327 (2001),
http://dx.doi.org/10.1007/s002160000656
[11] V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, Double pulse
laser-induced breakdown spectroscopy with femtosecond laser pulses,
Spectrochim. Acta B 63, 1006–1010 (2008),
http://dx.doi.org/10.1016/j.sab.2008.09.004
[12] O. Samek, A. Kurowski, S. Kittel, S. Kukhlevsky, and R.
Hergenröder, Ultra-short laser pulse ablation using shear-force
feedback: Femtosecond laser induced breakdown spectroscopy
feasibility study, Spectrochim. Acta B 60, 1225–1229 (2005),
http://dx.doi.org/10.1016/j.sab.2005.05.032
[13] P.P. Pronko, Z. Zhang, and P.A. VanRompay, Critical density
effects in femtosecond ablation plasma and consequences for high
intensity pulsed laser deposition, Appl. Surf. Sci. 208–209,
492–501 (2003),
http://dx.doi.org/10.1016/S0169-4332%2802%2901444-7
[14] A. Semerok and C. Dutouquet, Ultrashort double pulse laser
ablation of metals, Thin Solid Films 453–454, 501–505
(2004),
http://dx.doi.org/10.1016/j.tsf.2003.11.115
[15] L. St-Onge, V. Detalle, and M. Sabsabi, Enhanced laser-induced
breakdown spectroscopy using the combination of fourth-harmonic and
fundamental Nd:YAG laser pulses, Spectrochim. Acta B 57,
121–135 (2002),
http://dx.doi.org/10.1016/S0584-8547%2801%2900358-5
[16] A. Semerok and P. Mauchien, Ultrafast pulse laser ablation for
surface elemental analysis, Rev. Laser Eng. 33, 530–535
(2005)
[17] J.P. Colombier, P. Combis, A. Rosenfeld, I.V. Hertel, E.
Audouard, and R. Stoian, Optimized energy coupling at ultrafast
laser-irradiated metal surfaces by tailoring intensity envelopes:
Consequences for material removal from Al samples, Phys. Rev. B 74,
224106 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.224106
[18] S.S. Mao, X. Mao, R. Greif, and R.E. Russo, Initiation of an
early-stage plasma during picosecond laser ablation of solids, Appl.
Phys. Lett. 77, 2464–2466 (2000),
http://dx.doi.org/10.1063/1.1318239
[19] A. Melninkaitis, T. Balciunas, A. Vanagas, and V. Sirutkaitis,
Time-resolved digital holography: a versatile tool for femtosecond
laser-induced damage studies, in: Laser-Induced Damage in
Optical Materials: 2009, eds. G.J. Exarhos, V.E. Gruzdev, D.
Ristau, M.J. Soileau, and C.J. Stolz, Proc. SPIE 7504,
75040O (2009),
http://dx.doi.org/10.1117/12.836473