[PDF]    http://dx.doi.org/10.3952/lithjphys.50120

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 95–103 (2010)


EXPERIMENTAL STUDY ON FEMTOSECOND LASER MICROMACHINING OF GROOVES IN STAINLESS STEEL
K. Kuršelis, T. Kudrius, D. Paipulas, O. Balachninaitė, and V. Sirutkaitis
Laser Research Centre, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: kestutis.kurselis@ff.vu.lt

Received 20 October 2009; revised 18 March 2010; accepted 19 March 2010

Laser micromachining of grooves having rectangular profile in stainless steel with high repetition rate femtosecond pulses was investigated. Wide range of process parameters, such as peak fluence (0.15–133 J/cm2), pulse repetition rate (10–223 kHz), cumulative exposure dose, and liquid-assisted method for improving both machining efficiency and resultant structure quality was considered in order to provide understanding of underlying physical capabilities and limitations. Thereby the presence of optimal regimes for obtaining respectively maximum pulse energy utilization and maximum machining performance is proved. Logarithmic law of ablation rate for 400 fs laser pulses centred at 1030 nm with repetition rate of 25 kHz is confirmed for this type of machining.
Keywords: femtosecond micromachining, laser ablation, liquid-assisted ablation, rectangular grooves
PACS:81.16.Rf, 81.20.Wk, 61.80.Ba


EKSPERIMENTINIS ITIN MAŽŲ GRIOVELIŲ FORMAVIMO NERŪDIJANČIAME PLIENE FEMTOSEKUNDINIU LAZERIU TYRIMAS
K. Kuršelis, T. Kudrius, D. Paipulas, O. Balachninaitė, V. Sirutkaitis
Nacionalinis politechnikos institutas, Meksikas, Meksika

Tirtas stačiakampio profilio griovelių, kurių charakteringi matmenys yra didesni nei sufokusuoto pluošto diametras, formavimo, naudojant didelio pasikartojimo dažnio femtosekundinius impulsus, dėsningumai. Šiuo tikslu plačiame diapazone buvo keičiamos pagrindinių tokiam apdirbimui svarbių parametrų vertės: impulsų pasikartojimo dažnis (10–223 kHz), impulso energijos įtėkis (0,15–133 J/cm2), spinduliuotės dozė. Išbandytas suaktyvinimo skysčiu metodas, leidžiantis pagerinti tiek apdirbimo proceso, tiek ir gaunamo darinio charakteristikas. Gauti rezultatai padeda lengviau įvertinti šios technologijos galimybes ir suprasti vykstančius fizikinius procesus. Iš jų matyti, kad, tinkamai parinkus parametrus, galima maksimaliai panaudoti spinduliuotės energiją ir pasiekti didžiausią našumą. Taip pat buvo parodyta, kad, naudojant 400 fs 1030 nm centrinio bangos ilgio impulsus ir esant 25 kHz pasikartojimo dažniui, šiam apdirbimo būdui galioja logaritminis abliacijos spartos priklausomybės nuo energijos įtėkio dėsnis.


References / Nuorodos


[1] M.R.H. Knowles, A.I. Bell, G.R. Rutterford, A.J. Andrews, G. Foster-Turner, and A.J. Kearsley, Laser drilling of fuel injection components, in: Proceedings of ICALEO 2000, Vol. 91 (Society of Photo-Optical Instrumentation Engineers, Bellingham, USA, 2000) pp. F42–F51
[2] K. Sugioka, B. Gu, and A. Holmes, The state of the art and future prospects for laser direct-write for industrial and commercial applications, MRS Bull. 32, 47–54 (2007),
http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=7458&DID=183984
[3] C. Momma, U. Knop, and S. Nolte, Laser cutting of slotted tube coronary stents – State-of-the-art and future developments, Progr. Biomed. Res. 4, 39–44 (1999)
[4] A.S. Holmes, Laser fabrication and assembly processes for MEMS, Proc. SPIE 4274, 297–306 (2001),
http://dx.doi.org/10.1117/12.432522
[5] L. Uriarte, A. Ivanov, H. Oosterling, L. Staemmler, P.T. Tang, and D. Allen, A comparison between microfabrication technologies for metal tooling, in: 4M 2005, First International Conference on Multi-Material Manufacture Proceedings, eds. W. Menz and S. Dimov (Elsevier Science, Oxford, UK, 2005) pp. 351–354,
http://www.amazon.com/gp/reader/0080448798/
[6] M. Henry, P.M. Harrison, I. Henderson, and M.F. Brownell, Laser milling: a practical industrial solution for machining a wide variety of materials, Proc. SPIE 5662, 627–632 (2004),
http://dx.doi.org/10.1117/12.596743
[7] C.Y. Chien and M.C. Gupta, Pulse width effect in ultrafast laser processing of materials, Appl. Phys. A 81, 1257–1263 (2005),
http://dx.doi.org/10.1007/s00339-004-2989-z
[8] B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109–115 (1996),
http://dx.doi.org/10.1007/BF01567637
[9] S.E. Kirkwood, M.T. Taschuk, Y.Y. Tsui, and R. Fedosejevs, Nanomilling surfaces using near-threshold femtosecond laser pulses, J. Phys. Conf. 59(1), 591–594 (2007),
http://dx.doi.org/10.1088/1742-6596/59/1/126
[10] G. Kamlage, T. Bauer, A. Ostendorf, and B.N. Chichkov, Deep drilling of metals by femtosecond laser pulses, Appl. Phys. A 77, 307–310 (2003),
http://www.springerlink.com/content/hr9ryk881x5ly6nc/fulltext.pdf
[11] R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps, Appl. Surf. Sci. 249, 322–331 (2005),
http://dx.doi.org/10.1016/j.apsusc.2004.12.027
[12] D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun. 56, 219–221 (1985),
http://dx.doi.org/10.1016/0030-4018%2885%2990120-8
[13] T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C.Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power, Opt. Lett. 35, 94–96 (2010),
http://dx.doi.org/10.1364/OL.35.000094
[14] P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H.D. Hoffmann, and R. Poprawe, 400W Yb:YAG Innoslab fs-Amplifier, Opt. Express 17, 12230–12245 (2009),
http://dx.doi.org/10.1364/OE.17.012230
[15] F. Dausinger, Femtosecond technology for precision manufacturing: fundamental and technical aspects, Proc. SPIE 4830, 471–478 (2003),
http://dx.doi.org/10.1117/12.486506
[16] J. König, S. Nolte, and A. Tünnermann, Plasma evolution during metal ablation with ultrashort laser pulses, Opt. Express 13, 10597–10607 (2005),
http://dx.doi.org/10.1364/OPEX.13.010597
[17] R. Penttilä, H. Pantsar, and P. Laakso, Picosecond laser processing – material removal rates of metals, in: Proceedings of the 11th NOLAMP Conference in Laser Processing of Materials (Lappeenranta University of Technology, Lappeenranta, Finland, 2007) pp. 502–512
[18] D.M. Karnakis, G. Rutterford, and M.R.H. Knowles, High power DPSS laser micro-machining of silicon and stainless steel, in: Proceedings of the 3rd International WLT Conference on Lasers in Manufacturing (AT-Fachverlag, Stuttgart, Germany, 2005) pp. 741–746,
http://www.oxfordlasers.com/files/dpss_laser_micromachining.pdf
[19] A. Ostendorf, C. Kulik, T. Bauer, and N. Barsch, Ablation of metals and semiconductors with ultrashort-pulsed lasers, improving surface qualities of micro cuts and grooves, Proc. SPIE 5340, 153–163 (2004),
http://dx.doi.org/10.1364/OE.16.008958
[20] A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system, Opt. Express 16, 8958–8968 (2008),
http://dx.doi.org/10.1364/OE.16.008958
[21] J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett. 7, 196–198 (1982),
http://dx.doi.org/10.1364/OL.7.000196
[22] R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell, Coulomb explosion in ultrashort pulsed laser ablation of Al2O3, Phys. Rev. B 62, 13167–13173 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.13167
[23] G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?, J. Laser Micro/Nanoeng. 4(3), 186–191 (2009),
http://dx.doi.org/10.1007/BF01538207
[24] S. Preuss, A. Demchuk, and M. Stuke, Sub-picosecond UV laser ablation of metals, Appl. Phys. A 61, 33–37 (1995),
http://dx.doi.org/10.1007/BF01538207
[25] P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, and T.J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air, Appl. Surf. Sci. 233, 275–287 (2004),
http://dx.doi.org/10.1016/j.apsusc.2004.03.229
[26] A.Y. Vorobyev, V.M. Kuzmichev, N.G. Kokody, P. Kohns, J. Dai, and Ch. Guo, Residual thermal effects in Al following single ns- and fs-laser pulse ablation, Appl. Phys. A 82(2), 357–362 (2006),
http://dx.doi.org/10.1007/s00339-005-3412-0
[27] A. Borowiec and H.K. Haugen, Femtosecond laser micromachining of grooves in indium phosphide, Appl. Phys. A 79, 521–529 (2004),
http://dx.doi.org/10.1007/s00339-003-2377-0
[28] F. Ahmed and M.S. Lee, Micromachining of grooves for cutting fused silica plates with femtosecond laser pulses, in: Conference on Lasers and Electro-Optics / Pacific Rim 2007 (Optical Society of America, 2007), paper TuB2_3,
http://www.opticsinfobase.org/abstract.cfm?URI=CLEOPR-2007-TuB2_3
[29] M. Geiger, S. Roth, and W. Becker, Microstructuring and surface modification by excimer laser machining under thin liquid films, Proc. SPIE 3404, 200–208 (1998),
http://dx.doi.org/10.1117/12.308616
[30] A. Dupont, P. Caminat, and P. Bournot, Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface, J. Appl. Phys. 78, 2022–2028 (1995),
http://dx.doi.org/10.1063/1.360178
[31] A.C. Tam, P.L. Wing, W. Zapka, and W. Ziemlich, Laser-cleaning techniques for removal of surface particulates, J. Appl. Phys. 71(7), 3515–3523 (1992),
http://dx.doi.org/10.1063/1.350906
[32] R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring, IEEE J. Select. Topics Quantum Electron. 2, 826–835 (1996),
http://dx.doi.org/10.1109/2944.577305