[PDF]
http://dx.doi.org/10.3952/lithjphys.50120
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 95–103 (2010)
EXPERIMENTAL STUDY ON
FEMTOSECOND LASER MICROMACHINING OF GROOVES IN STAINLESS STEEL
K. Kuršelis, T. Kudrius, D. Paipulas, O. Balachninaitė, and V.
Sirutkaitis
Laser Research Centre, Vilnius University, Saulėtekio 10,
LT-10223 Vilnius, Lithuania
E-mail: kestutis.kurselis@ff.vu.lt
Received 20 October 2009; revised
18 March 2010; accepted 19 March 2010
Laser micromachining of grooves
having rectangular profile in stainless steel with high repetition
rate femtosecond pulses was investigated. Wide range of process
parameters, such as peak fluence (0.15–133 J/cm2),
pulse repetition rate (10–223 kHz), cumulative exposure dose, and
liquid-assisted method for improving both machining efficiency and
resultant structure quality was considered in order to provide
understanding of underlying physical capabilities and limitations.
Thereby the presence of optimal regimes for obtaining respectively
maximum pulse energy utilization and maximum machining performance
is proved. Logarithmic law of ablation rate for 400 fs laser
pulses centred at 1030 nm with repetition rate of 25 kHz is
confirmed for this type of machining.
Keywords: femtosecond micromachining,
laser ablation, liquid-assisted ablation, rectangular grooves
PACS:81.16.Rf, 81.20.Wk, 61.80.Ba
EKSPERIMENTINIS ITIN MAŽŲ
GRIOVELIŲ FORMAVIMO NERŪDIJANČIAME PLIENE FEMTOSEKUNDINIU
LAZERIU TYRIMAS
K. Kuršelis, T. Kudrius, D. Paipulas, O. Balachninaitė, V.
Sirutkaitis
Nacionalinis politechnikos institutas, Meksikas, Meksika
Tirtas stačiakampio profilio griovelių, kurių
charakteringi matmenys yra didesni nei sufokusuoto pluošto
diametras, formavimo, naudojant didelio pasikartojimo dažnio
femtosekundinius impulsus, dėsningumai. Šiuo tikslu plačiame
diapazone buvo keičiamos pagrindinių tokiam apdirbimui svarbių
parametrų vertės: impulsų pasikartojimo dažnis (10–223 kHz),
impulso energijos įtėkis (0,15–133 J/cm2),
spinduliuotės dozė. Išbandytas suaktyvinimo skysčiu metodas,
leidžiantis pagerinti tiek apdirbimo proceso, tiek ir gaunamo
darinio charakteristikas. Gauti rezultatai padeda lengviau
įvertinti šios technologijos galimybes ir suprasti vykstančius
fizikinius procesus. Iš jų matyti, kad, tinkamai parinkus
parametrus, galima maksimaliai panaudoti spinduliuotės energiją ir
pasiekti didžiausią našumą. Taip pat buvo parodyta, kad, naudojant
400 fs 1030 nm centrinio bangos ilgio impulsus ir esant 25 kHz
pasikartojimo dažniui, šiam apdirbimo būdui galioja logaritminis
abliacijos spartos priklausomybės nuo energijos įtėkio dėsnis.
References / Nuorodos
[1] M.R.H. Knowles, A.I. Bell, G.R. Rutterford, A.J. Andrews, G.
Foster-Turner, and A.J. Kearsley, Laser drilling of fuel injection
components, in: Proceedings of ICALEO 2000, Vol. 91 (Society
of Photo-Optical Instrumentation Engineers, Bellingham, USA, 2000)
pp. F42–F51
[2] K. Sugioka, B. Gu, and A. Holmes, The state of the art and
future prospects for laser direct-write for industrial and
commercial applications, MRS Bull. 32, 47–54 (2007),
http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=7458&DID=183984
[3] C. Momma, U. Knop, and S. Nolte, Laser cutting of slotted tube
coronary stents – State-of-the-art and future developments, Progr.
Biomed. Res. 4, 39–44 (1999)
[4] A.S. Holmes, Laser fabrication and assembly processes for MEMS,
Proc. SPIE 4274, 297–306 (2001),
http://dx.doi.org/10.1117/12.432522
[5] L. Uriarte, A. Ivanov, H. Oosterling, L. Staemmler, P.T. Tang,
and D. Allen, A comparison between microfabrication technologies for
metal tooling, in: 4M 2005, First International Conference on
Multi-Material Manufacture Proceedings, eds. W. Menz and S.
Dimov (Elsevier Science, Oxford, UK, 2005) pp. 351–354,
http://www.amazon.com/gp/reader/0080448798/
[6] M. Henry, P.M. Harrison, I. Henderson, and M.F. Brownell, Laser
milling: a practical industrial solution for machining a wide
variety of materials, Proc. SPIE 5662, 627–632 (2004),
http://dx.doi.org/10.1117/12.596743
[7] C.Y. Chien and M.C. Gupta, Pulse width effect in ultrafast laser
processing of materials, Appl. Phys. A 81, 1257–1263 (2005),
http://dx.doi.org/10.1007/s00339-004-2989-z
[8] B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A.
Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of
solids, Appl. Phys. A 63, 109–115 (1996),
http://dx.doi.org/10.1007/BF01567637
[9] S.E. Kirkwood, M.T. Taschuk, Y.Y. Tsui, and R. Fedosejevs,
Nanomilling surfaces using near-threshold femtosecond laser pulses,
J. Phys. Conf. 59(1), 591–594 (2007),
http://dx.doi.org/10.1088/1742-6596/59/1/126
[10] G. Kamlage, T. Bauer, A. Ostendorf, and B.N. Chichkov, Deep
drilling of metals by femtosecond laser pulses, Appl. Phys. A 77,
307–310 (2003),
http://www.springerlink.com/content/hr9ryk881x5ly6nc/fulltext.pdf
[11] R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S.
Valette, C. Donnet, E. Audouard, and F. Dausinger, Pulse width and
energy influence on laser micromachining of metals in a range of 100
fs to 5 ps, Appl. Surf. Sci. 249, 322–331 (2005),
http://dx.doi.org/10.1016/j.apsusc.2004.12.027
[12] D. Strickland and G. Mourou, Compression of amplified chirped
optical pulses, Opt. Commun. 56, 219–221 (1985),
http://dx.doi.org/10.1016/0030-4018%2885%2990120-8
[13] T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler,
C.Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, Femtosecond
fiber CPA system emitting 830 W average output power, Opt. Lett. 35,
94–96 (2010),
http://dx.doi.org/10.1364/OL.35.000094
[14] P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H.D.
Hoffmann, and R. Poprawe, 400W Yb:YAG Innoslab fs-Amplifier, Opt.
Express 17, 12230–12245 (2009),
http://dx.doi.org/10.1364/OE.17.012230
[15] F. Dausinger, Femtosecond technology for precision
manufacturing: fundamental and technical aspects, Proc. SPIE 4830,
471–478 (2003),
http://dx.doi.org/10.1117/12.486506
[16] J. König, S. Nolte, and A. Tünnermann, Plasma evolution during
metal ablation with ultrashort laser pulses, Opt. Express 13,
10597–10607 (2005),
http://dx.doi.org/10.1364/OPEX.13.010597
[17] R. Penttilä, H. Pantsar, and P. Laakso, Picosecond laser
processing – material removal rates of metals, in: Proceedings
of the 11th NOLAMP Conference in Laser Processing of Materials
(Lappeenranta University of Technology, Lappeenranta, Finland, 2007)
pp. 502–512
[18] D.M. Karnakis, G. Rutterford, and M.R.H. Knowles, High power
DPSS laser micro-machining of silicon and stainless steel, in: Proceedings
of the 3rd International WLT Conference on Lasers in Manufacturing
(AT-Fachverlag, Stuttgart, Germany, 2005) pp. 741–746,
http://www.oxfordlasers.com/files/dpss_laser_micromachining.pdf
[19] A. Ostendorf, C. Kulik, T. Bauer, and N. Barsch, Ablation of
metals and semiconductors with ultrashort-pulsed lasers, improving
surface qualities of micro cuts and grooves, Proc. SPIE 5340,
153–163 (2004),
http://dx.doi.org/10.1364/OE.16.008958
[20] A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A.
Tünnermann, High speed laser drilling of metals using a high
repetition rate, high average power ultrafast fiber CPA system, Opt.
Express 16, 8958–8968 (2008),
http://dx.doi.org/10.1364/OE.16.008958
[21] J.M. Liu, Simple technique for measurements of pulsed
Gaussian-beam spot sizes, Opt. Lett. 7, 196–198 (1982),
http://dx.doi.org/10.1364/OL.7.000196
[22] R. Stoian, D. Ashkenasi, A. Rosenfeld, and E.E.B. Campbell,
Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,
Phys. Rev. B 62, 13167–13173 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.13167
[23] G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M.
Gedvilas, Use of high repetition rate and high power lasers in
microfabrication: How to keep the efficiency high?, J. Laser
Micro/Nanoeng. 4(3), 186–191 (2009),
http://dx.doi.org/10.1007/BF01538207
[24] S. Preuss, A. Demchuk, and M. Stuke, Sub-picosecond UV laser
ablation of metals, Appl. Phys. A 61, 33–37 (1995),
http://dx.doi.org/10.1007/BF01538207
[25] P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, and T.J.
Glynn, The effect of damage accumulation behaviour on ablation
thresholds and damage morphology in ultrafast laser micro-machining
of common metals in air, Appl. Surf. Sci. 233, 275–287
(2004),
http://dx.doi.org/10.1016/j.apsusc.2004.03.229
[26] A.Y. Vorobyev, V.M. Kuzmichev, N.G. Kokody, P. Kohns, J. Dai,
and Ch. Guo, Residual thermal effects in Al following single ns- and
fs-laser pulse ablation, Appl. Phys. A 82(2), 357–362
(2006),
http://dx.doi.org/10.1007/s00339-005-3412-0
[27] A. Borowiec and H.K. Haugen, Femtosecond laser micromachining
of grooves in indium phosphide, Appl. Phys. A 79, 521–529
(2004),
http://dx.doi.org/10.1007/s00339-003-2377-0
[28] F. Ahmed and M.S. Lee, Micromachining of grooves for cutting
fused silica plates with femtosecond laser pulses, in: Conference
on Lasers and Electro-Optics / Pacific Rim 2007 (Optical
Society of America, 2007), paper TuB2_3,
http://www.opticsinfobase.org/abstract.cfm?URI=CLEOPR-2007-TuB2_3
[29] M. Geiger, S. Roth, and W. Becker, Microstructuring and surface
modification by excimer laser machining under thin liquid films,
Proc. SPIE 3404, 200–208 (1998),
http://dx.doi.org/10.1117/12.308616
[30] A. Dupont, P. Caminat, and P. Bournot, Enhancement of material
ablation using 248, 308, 532, 1064 nm laser pulse with a water film
on the treated surface, J. Appl. Phys. 78, 2022–2028 (1995),
http://dx.doi.org/10.1063/1.360178
[31] A.C. Tam, P.L. Wing, W. Zapka, and W. Ziemlich, Laser-cleaning
techniques for removal of surface particulates, J. Appl. Phys. 71(7),
3515–3523 (1992),
http://dx.doi.org/10.1063/1.350906
[32] R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R.
Birngruber, Analysis of cavitation dynamics during pulsed laser
tissue ablation by optical on-line monitoring, IEEE J. Select.
Topics Quantum Electron. 2, 826–835 (1996),
http://dx.doi.org/10.1109/2944.577305