[PDF]
http://dx.doi.org/10.3952/lithjphys.50121
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 75–82 (2010)
3D ARTIFICIAL POLYMERIC
SCAFFOLDS FOR STEM CELL GROWTH FABRICATED BY FEMTOSECOND LASER
M. Malinauskasa, P. Danilevičiusa,
D. Baltriukienėb, M. Rutkauskasa,
A. Žukauskasa, Ž. Kairytėb,
G. Bičkauskaitėa, V. Purlysa,
D. Paipulasa, V. Bukelskienėb, and
R. Gadonasa
aDepartment of Quantum Electronics and Laser
Research Centre, Vilnius University, Saulėtekio 10, LT-10223
Vilnius, Lithuania
E-mail: mangirdas.malinauskas@ff.vu.lt
bVivarium, Institute of Biochemistry, Mokslininkų
12, LT-08662 Vilnius, Lithuania
Received 16 October 2009; revised
18 March 2010; accepted 19 March 2010
Femtosecond Laser Induced
Polymerization is an attractive direct writing technique for rapid
three-dimensional (3D) micro and nanofabrication in diverse
applications. Recently, it has been successfully applied for 3D
scaffold fabrication required in biomedicine applications.
However, there are still a lot of investigations to be done before
it can be used for practical applications in tissue engineering or
regenerative medicine. In this work, experimental results on
production of artificial polymeric scaffolds for stem cell growth
are presented. Parameters (average laser power, sample scanning
speed, and developing conditions) for microfabrication in
biocompatible photopolymers AKRE (AKRE37) and ORMOSIL (SZ2080) are
experimentally determined. 3D custom form and size artificial
scaffolds were successfully microfabricated. Adult stem cell
growth on them was investigated in order to test their
biocompatibility. The results of myogenic stem cell culture
expansion were compared to the control growth of the same cells on
the scaffolds manufactured out of commonly used biocompatible
photopolymers ORMOCER (Ormocore b59) and Poly-Ethylen Glycol
Di-Acrylate (PEG-DA-258). Preliminary results show FLIP technique
to have potential in fabrication of artificial 3D polymeric
scaffolds for cell proliferation experiments. These are the first
steps in transferring FLIP fabrication method from laboratory
tests to flexible manufacturing of individual scaffolds out of
biocompatible and biodegradable polymers.
Keywords: femtosecond laser, two-photon
polymerization, 3D micro-fabrication, biocompatible photopolymers,
artificial scaffolds
PACS: 82.30.Cf, 89.20.Bb, 87.17.Rt
TRIMAČIŲ DIRBTINIŲ POLIMERINIŲ
KARKASŲ KAMIENINĖMS LĄSTELĖMS AUGINTI FORMAVIMAS FEMTOSEKUNDINIU
LAZERIU
M. Malinauskasa, P. Danilevičiusa,
D. Baltriukienėb, M. Rutkauskasa,
A. Žukauskasa, Ž. Kairytėb,
G. Bičkauskaitėa, V. Purlysa,
D. Paipulasa, V. Bukelskienėb,
R. Gadonasa
aLazerinių tyrimų centras, Vilniaus universitetas,
Saulėtekio al. 10, LT-10223 Vilnius, Lietuva
bBiochemijos instituto vivariumas, Mokslininkų
12, LT-08662 Vilnius, Lietuva
Eksperimentiniame darbe pristatomas dirbtinių
trimačių polimerinių karkasų, skirtų kamieninėms ląstelėms
auginti, formavimo būdas, naudojant femtosekundinio lazerio šviesa
indukuotą polimerizacijos reakciją. Tyrimui naudojamos naujos,
perspektyvios medžiagos AKRE37 ir SZ2080. Auginant triušio
kamienines ląsteles, tikrinamas šių medžiagų biologinis
sutaikomumas ir lyginamas su biomedicinos praktikoje plačiai
naudojamomis šviesai jautriomis medžiagomis Ormocore b59 ir
PEG-DA-258. Pateikiami formavimo erdvinės skyros vertinimai ir
trimačių karkasų pavyzdžiai, atskleidžiantys šios technologijos
lankstumą ir taikymo galimybes gaminant sudėtingos geometrijos
mikroporėtus karkasus. Ląstelių augimo tyrimai rodo, kad medžiagos
ir iš jų suformuotų karkasų sandara yra tinkamos biomedicininiams
taikymams. Tai – pirmieji žingsniai, kuriant dirbtinius karkasus
pažeistiems audiniams atstatyti. Darbe pateiktu būdu jie galėtų
būti gaminami individualiai kiekvienam pacientui.
References / Nuorodos
[1] F. Claeyssens, E.A. Hasan, A. Gaidukevičiūtė, D.S. Achilleos, A.
Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M.
Vamvakaki, B.N. Chichkov, and M. Farsari, Three-dimensional
biodegradable structures fabricated by two-photon polymerization,
Langmuir 25(5), 3219–3223 (2009),
http://dx.doi.org/10.1021/la803803m
[2] S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.-A. Kolb,
H. Haferkamp, and B.N. Chichkov, Three-dimensional cell growth on
structures fabricated from ORMOCER® by two-photon polymerization
technique, J. Biomater. Appl. 22, 275–287 (2007),
http://dx.doi.org/10.1177/0885328207077590
[3] E. Cukierman, R. Pankov, D.R. Stevens, and K.M. Yamada, Taking
cell-matrix adhesions to the third dimension, Science 294(5547),
1708–1712 (2001),
http://dx.doi.org/10.1126/science.1064829
[4] P. Tayalia, C.R. Mendonca, T. Baldacchini, D.J. Mooney, and E.
Mazur, 3D Cell-migration studies using two-photon engineered polymer
scaffolds, Adv. Mater. 20, 4494–4498 (2008),
http://dx.doi.org/10.1002/adma.200801319
[5] A. Ovsianikov, B.N. Chichkov, M. Malinauskas, S. Schlie, A.
Ngezahayo, S. Gittard, and R. Narayan, Two-photon polymerization of
Poly(ethylene glycol) materials for biomedical applications
[submitted to Adv. Mater.]
[6] 3D Laser Microfabrication, Principles and Applications,
eds. H. Misawa and S. Juodkazis, 1st ed. (Wiley–VCH, Weinheim,
2006),
http://www.amazon.com/gp/reader/352731055X/
[7] C. Decker, Laser-induced polymerization, in: Materials for
Microlithography, ACS Symp. Ser. 266, 207–223 (1985),
http://dx.doi.org/10.1021/bk-1984-0266.ch009
[8] I.H. Lee and D.-W. Cho, Micro-stereolithography photopolymer
solidification patterns for various laser beam exposure conditions,
Int. J. Adv. Manuf. Technol. 22, 410–416 (2003),
http://dx.doi.org/10.1007/s00170-003-1538-9
[9] V.K. Varadan, X. Jiang, and V.V. Varadan, Microstereolithography
and other Fabrication Techniques for 3D MEMS, 1st ed. (Wiley,
New York, 2001),
http://www.amazon.com/gp/reader/047152185X/
[10] J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R.
Kling, A. Ostendorf, and M. Spitzbart, Photopolymers with tunable
mechanical properties processed by laser-based high-resolution
stereolithography, J. Micromech. Microeng. 18, 125014
(2008),
http://dx.doi.org/10.1088/0960-1317/18/12/125014
[11] H.-B. Sun and S. Kawata, Two-photon laser precision
microfabrication and its applications to micro-nano devices and
systems, J. Lightwave Technol. 21, 624–633 (2003),
http://dx.doi.org/10.1109/JLT.2003.809564
[12] S.H. Park, T.W. Lim, D.Y. Yang, R.H. Kim, and K.S. Lee,
Improvement of spatial resolution in nanostereolithography using
radical quencher, Macromol. Res. 14(5), 559–564 (2006),
http://www.polymer.or.kr/english/publications/journals.html
[13] S. Maruo and J. Fourkas, Recent progress in multiphoton
microfabrication, Laser & Photon. Rev. 2(1–2), 100–111
(2008),
http://dx.doi.org/10.1002/lpor.200710039
[14] P.V. Guillot, W. Cui, N.M. Fisk, and D.J. Polak, Cell
differentiation and expansion for clinical applications of tissue
engineering, J. Cell. Mol. Med. 11(5), 935–944 (2007),
http://dx.doi.org/10.1111/j.1582-4934.2007.00106.x
[15] C. Boura, S. Muller, D. Vautier, D. Dumas, P. Schaaf, J. Claude
Voegel, J. Francois Stoltz, and P. Menu, Endothelial
cell-interactions with polyelectrolyte multilayer films, Biomater. 26(22),
4568–4575 (2005),
http://dx.doi.org/10.1016/j.biomaterials.2004.11.036
[16] M.N. Rahaman and J.J. Mao. Stem cell-based composite tissue
constructs for regenerative medicine, Biotechnol. Bioeng. 91(3),
261–284 (2005),
http://dx.doi.org/10.1002/bit.20292
[17] A. Atala, Engineering tissues, organs and cells, J. Tissue Eng.
Regen. Med. 1(2), 83–96 (2007),
http://dx.doi.org/10.1002/term.18
[18] D. Howard, L.D. Buttery, K.M. Shakesheff, and S.J. Roberts,
Tissue engineering: strategies, stem cells and scaffolds, J. Anat. 213(1),
66–72 (2008),
http://dx.doi.org/10.1111/j.1469-7580.2008.00878.x
[19] S. Bajada, I. Mazakova, J.B. Richardson, and N. Ashammakhi,
Updates on stem cells and their applications in regenerative
medicine, J. Tissue Eng. Regen. Med. 2, 169–183 (2008),
http://dx.doi.org/10.1002/term.83
[20] M. Malinauskas, H. Gilbergs, V. Purlys, A. Žukauskas, M.
Rutkauskas, and R. Gadonas, Femtosecond laser-induced two-photon
photopolymerization for structuring of micro-optical and photonic
devices, Proc. SPIE 7366, 736622 (2009),
http://dx.doi.org/10.1117/12.821776
[21] M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė,
and R. Gadonas, Femtosecond visible light induced two-photon
photopolymerization for 3D micro/nanostructuring in photoresists and
photopolymers, Lithuanian J. Phys. [submitted],
http://dx.doi.org/10.3952/lithjphys.50203
[22] M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas,
Two-photon polymerization for fabrication of three-dimensional
micro- and nanostructures over a large area, Proc. SPIE 7204,
72040C (2009),
http://dx.doi.org/10.1117/12.811125
[23] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith,
I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and
C. Fotakis, Ultralow shrinkage hybrid photosensitive material for
two-photon polymerization microfabrication, ACS Nano 2(11),
2257–2262 (2008),
http://dx.doi.org/10.1021/nn800451w
[24] S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.A. Kolb,
H. Haferkamp, and B.N. Chichkov, Three-dimensional cell growth on
structures fabricated from ORMOCER by two-photon polymerization
technique, J. Biomater. Appl. 22(3), 275–278 (2007),
http://dx.doi.org/10.1177/0885328207077590
[25] L. Almany and D. Seliktar, Biosynthetic hydrogel scaffolds made
from fibrinogen and polyethylene glycol for 3D cell cultures,
Biomater. 26, 2467–2477 (2005),
http://dx.doi.org/10.1016/j.biomaterials.2004.06.047
[26] R. Širmenis, V. Bukelskienė, V. Domkus, and V. Sirvydis,
Cellular cardiomyoplasty: Isolation and cultivation of skeletal
muscle satellite cells, Acta Med. Lituanica 6, 178–181
(1999)
[27] R.J. DeVoe, H. Kalweit, C.A. Leatherdale, and C.R. Williams,
Voxel shapes in two-photon microfabrication, Proc. SPIE 4797,
310–316 (2003),
http://dx.doi.org/10.1117/12.459028
[28] S. Inoue and R. Oldenbourg in: Handbook of Optics: Devices,
Measurements, and Properties, Vol. 2, ed. M. Bass
(McGraw–Hill, 1995) pp. 566–568
[29] Y. Liu, L. Pyrak-Nolte, and D. Nolte, General 3D microporous
structures fabricated with two-photon laser machining, Proc. SPIE 6886,
68860Y (2008),
http://dx.doi.org/10.1117/12.760313
[30] D. Wu, N. Fang, C. Sun, and X. Zhang, Stiction problems in
releasing of 3D microstructures and its solution, Sensors Actuators
A 128, 109–115 (2006),
http://dx.doi.org/10.1016/j.sna.2005.12.041
[31] S.H. Park, K.H. Kim, T.W. Lim, D.Y. Yang, and K.S. Lee,
Investigation of three-dimensional pattern collapse owing to surface
tension using an imperfection finite element model, Microelectron.
Eng. 85, 432–439 (2008),
http://dx.doi.org/10.1016/j.mee.2007.08.003
[32] H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and
H. Misawa, Top-gathering pillar array of hybrid organic-inorganic
material by means of selforganization, Appl. Phys. A 83,
447–451 (2006),
http://dx.doi.org/10.1007/s00339-006-3568-2
[33] J.C. Chachques, J.C. Trainini, N. Lago, M. Cortes-Morichetti,
O. Schussler, and A. Carpentier, Myocardial assistance by grafting a
new bioartificial upgraded myocardium magnum trial: Clinical
feasibility study, Ann. Thorac. Surg. 85, 901–908 (2008),
http://dx.doi.org/10.1016/j.athoracsur.2007.10.052
[34] J. Weng and M. Wang, Producing chitin scaffolds with controlled
pore size and interconnectivity for tissue engineering, J. Mater.
Sci. Lett. 20, 1401–1403 (2001),
http://dx.doi.org/10.1023/A:1011643511015
[35] S.J. Hollister, R.D. Maddox, and J.M. Taboas, Optimal design
and fabrication of scaffolds to mimic tissue properties and satisfy
biological constraints, Biomater. 23, 4095–4103 (2002),
http://dx.doi.org/10.1016/S0142-9612%2802%2900148-5
[36] D.E. Ingber, Cellular mechanotransduction: putting all the
pieces together again, Faseb J. 20, 811–827 (2006),
http://dx.doi.org/10.1096/fj.05-5424rev
[37] K. Kaladhar and C.P. Sharma, Surface passivation and controlled
ligand supplementation of cellular activation processes – strategies
for bottom up synthesis of bioactive surfaces, Trends Biomater.
Artif. Organs 21, 29–62 (2007),
http://www.sbaoi.org/pdf/vol-21%281%29/2112962.pdf