[PDF]    http://dx.doi.org/10.3952/lithjphys.50121

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 75–82 (2010)


3D ARTIFICIAL POLYMERIC SCAFFOLDS FOR STEM CELL GROWTH FABRICATED BY FEMTOSECOND LASER
M. Malinauskasa, P. Danilevičiusa, D.  Baltriukienėb, M. Rutkauskasa, A. Žukauskasa, Ž. Kairytėb, G. Bičkauskaitėa, V. Purlysa, D. Paipulasa, V. Bukelskienėb, and R.  Gadonasa
aDepartment of Quantum Electronics and Laser Research Centre, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: mangirdas.malinauskas@ff.vu.lt
bVivarium, Institute of Biochemistry, Mokslininkų 12, LT-08662 Vilnius, Lithuania

Received 16 October 2009; revised 18 March 2010; accepted 19 March 2010

Femtosecond Laser Induced Polymerization is an attractive direct writing technique for rapid three-dimensional (3D) micro and nanofabrication in diverse applications. Recently, it has been successfully applied for 3D scaffold fabrication required in biomedicine applications. However, there are still a lot of investigations to be done before it can be used for practical applications in tissue engineering or regenerative medicine. In this work, experimental results on production of artificial polymeric scaffolds for stem cell growth are presented. Parameters (average laser power, sample scanning speed, and developing conditions) for microfabrication in biocompatible photopolymers AKRE (AKRE37) and ORMOSIL (SZ2080) are experimentally determined. 3D custom form and size artificial scaffolds were successfully microfabricated. Adult stem cell growth on them was investigated in order to test their biocompatibility. The results of myogenic stem cell culture expansion were compared to the control growth of the same cells on the scaffolds manufactured out of commonly used biocompatible photopolymers ORMOCER (Ormocore b59) and Poly-Ethylen Glycol Di-Acrylate (PEG-DA-258). Preliminary results show FLIP technique to have potential in fabrication of artificial 3D polymeric scaffolds for cell proliferation experiments. These are the first steps in transferring FLIP fabrication method from laboratory tests to flexible manufacturing of individual scaffolds out of biocompatible and biodegradable polymers.
Keywords: femtosecond laser, two-photon polymerization, 3D micro-fabrication, biocompatible photopolymers, artificial scaffolds
PACS: 82.30.Cf, 89.20.Bb, 87.17.Rt


TRIMAČIŲ DIRBTINIŲ POLIMERINIŲ KARKASŲ KAMIENINĖMS LĄSTELĖMS AUGINTI FORMAVIMAS FEMTOSEKUNDINIU LAZERIU
M. Malinauskasa, P. Danilevičiusa, D.  Baltriukienėb, M. Rutkauskasa, A. Žukauskasa, Ž. Kairytėb, G. Bičkauskaitėa, V. Purlysa, D. Paipulasa, V. Bukelskienėb, R.  Gadonasa
                      aLazerinių tyrimų centras, Vilniaus universitetas, Saulėtekio al. 10, LT-10223 Vilnius, Lietuva
bBiochemijos instituto vivariumas, Mokslininkų 12, LT-08662 Vilnius, Lietuva

Eksperimentiniame darbe pristatomas dirbtinių trimačių polimerinių karkasų, skirtų kamieninėms ląstelėms auginti, formavimo būdas, naudojant femtosekundinio lazerio šviesa indukuotą polimerizacijos reakciją. Tyrimui naudojamos naujos, perspektyvios medžiagos AKRE37 ir SZ2080. Auginant triušio kamienines ląsteles, tikrinamas šių medžiagų biologinis sutaikomumas ir lyginamas su biomedicinos praktikoje plačiai naudojamomis šviesai jautriomis medžiagomis Ormocore b59 ir PEG-DA-258. Pateikiami formavimo erdvinės skyros vertinimai ir trimačių karkasų pavyzdžiai, atskleidžiantys šios technologijos lankstumą ir taikymo galimybes gaminant sudėtingos geometrijos mikroporėtus karkasus. Ląstelių augimo tyrimai rodo, kad medžiagos ir iš jų suformuotų karkasų sandara yra tinkamos biomedicininiams taikymams. Tai – pirmieji žingsniai, kuriant dirbtinius karkasus pažeistiems audiniams atstatyti. Darbe pateiktu būdu jie galėtų būti gaminami individualiai kiekvienam pacientui.


References / Nuorodos


[1] F. Claeyssens, E.A. Hasan, A. Gaidukevičiūtė, D.S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B.N. Chichkov, and M. Farsari, Three-dimensional biodegradable structures fabricated by two-photon polymerization, Langmuir 25(5), 3219–3223 (2009),
http://dx.doi.org/10.1021/la803803m
[2] S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.-A. Kolb, H. Haferkamp, and B.N. Chichkov, Three-dimensional cell growth on structures fabricated from ORMOCER® by two-photon polymerization technique, J. Biomater. Appl. 22, 275–287 (2007),
http://dx.doi.org/10.1177/0885328207077590
[3] E. Cukierman, R. Pankov, D.R. Stevens, and K.M. Yamada, Taking cell-matrix adhesions to the third dimension, Science 294(5547), 1708–1712 (2001),
http://dx.doi.org/10.1126/science.1064829
[4] P. Tayalia, C.R. Mendonca, T. Baldacchini, D.J. Mooney, and E. Mazur, 3D Cell-migration studies using two-photon engineered polymer scaffolds, Adv. Mater. 20, 4494–4498 (2008),
http://dx.doi.org/10.1002/adma.200801319
[5] A. Ovsianikov, B.N. Chichkov, M. Malinauskas, S. Schlie, A. Ngezahayo, S. Gittard, and R. Narayan, Two-photon polymerization of Poly(ethylene glycol) materials for biomedical applications [submitted to Adv. Mater.]
[6] 3D Laser Microfabrication, Principles and Applications, eds. H. Misawa and S. Juodkazis, 1st ed. (Wiley–VCH, Weinheim, 2006),
http://www.amazon.com/gp/reader/352731055X/
[7] C. Decker, Laser-induced polymerization, in: Materials for Microlithography, ACS Symp. Ser. 266, 207–223 (1985),
http://dx.doi.org/10.1021/bk-1984-0266.ch009
[8] I.H. Lee and D.-W. Cho, Micro-stereolithography photopolymer solidification patterns for various laser beam exposure conditions, Int. J. Adv. Manuf. Technol. 22, 410–416 (2003),
http://dx.doi.org/10.1007/s00170-003-1538-9
[9] V.K. Varadan, X. Jiang, and V.V. Varadan, Microstereolithography and other Fabrication Techniques for 3D MEMS, 1st ed. (Wiley, New York, 2001),
http://www.amazon.com/gp/reader/047152185X/
[10] J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography, J. Micromech. Microeng. 18, 125014 (2008),
http://dx.doi.org/10.1088/0960-1317/18/12/125014
[11] H.-B. Sun and S. Kawata, Two-photon laser precision microfabrication and its applications to micro-nano devices and systems, J. Lightwave Technol. 21, 624–633 (2003),
http://dx.doi.org/10.1109/JLT.2003.809564
[12] S.H. Park, T.W. Lim, D.Y. Yang, R.H. Kim, and K.S. Lee, Improvement of spatial resolution in nanostereolithography using radical quencher, Macromol. Res. 14(5), 559–564 (2006),
http://www.polymer.or.kr/english/publications/journals.html
[13] S. Maruo and J. Fourkas, Recent progress in multiphoton microfabrication, Laser & Photon. Rev. 2(1–2), 100–111 (2008),
http://dx.doi.org/10.1002/lpor.200710039
[14] P.V. Guillot, W. Cui, N.M. Fisk, and D.J. Polak, Cell differentiation and expansion for clinical applications of tissue engineering, J. Cell. Mol. Med. 11(5), 935–944 (2007),
http://dx.doi.org/10.1111/j.1582-4934.2007.00106.x
[15] C. Boura, S. Muller, D. Vautier, D. Dumas, P. Schaaf, J. Claude Voegel, J. Francois Stoltz, and P. Menu, Endothelial cell-interactions with polyelectrolyte multilayer films, Biomater. 26(22), 4568–4575 (2005),
http://dx.doi.org/10.1016/j.biomaterials.2004.11.036
[16] M.N. Rahaman and J.J. Mao. Stem cell-based composite tissue constructs for regenerative medicine, Biotechnol. Bioeng. 91(3), 261–284 (2005),
http://dx.doi.org/10.1002/bit.20292
[17] A. Atala, Engineering tissues, organs and cells, J. Tissue Eng. Regen. Med. 1(2), 83–96 (2007),
http://dx.doi.org/10.1002/term.18
[18] D. Howard, L.D. Buttery, K.M. Shakesheff, and S.J. Roberts, Tissue engineering: strategies, stem cells and scaffolds, J. Anat. 213(1), 66–72 (2008),
http://dx.doi.org/10.1111/j.1469-7580.2008.00878.x
[19] S. Bajada, I. Mazakova, J.B. Richardson, and N. Ashammakhi, Updates on stem cells and their applications in regenerative medicine, J. Tissue Eng. Regen. Med. 2, 169–183 (2008),
http://dx.doi.org/10.1002/term.83
[20] M. Malinauskas, H. Gilbergs, V. Purlys, A. Žukauskas, M. Rutkauskas, and R. Gadonas, Femtosecond laser-induced two-photon photopolymerization for structuring of micro-optical and photonic devices, Proc. SPIE 7366, 736622 (2009),
http://dx.doi.org/10.1117/12.821776
[21] M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers, Lithuanian J. Phys. [submitted],
http://dx.doi.org/10.3952/lithjphys.50203
[22] M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area, Proc. SPIE 7204, 72040C (2009),
http://dx.doi.org/10.1117/12.811125
[23] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, Ultralow shrinkage hybrid photosensitive material for two-photon polymerization microfabrication, ACS Nano 2(11), 2257–2262 (2008),
http://dx.doi.org/10.1021/nn800451w
[24] S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.A. Kolb, H. Haferkamp, and B.N. Chichkov, Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique, J. Biomater. Appl. 22(3), 275–278 (2007),
http://dx.doi.org/10.1177/0885328207077590
[25] L. Almany and D. Seliktar, Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures, Biomater. 26, 2467–2477 (2005),
http://dx.doi.org/10.1016/j.biomaterials.2004.06.047
[26] R. Širmenis, V. Bukelskienė, V. Domkus, and V. Sirvydis, Cellular cardiomyoplasty: Isolation and cultivation of skeletal muscle satellite cells, Acta Med. Lituanica 6, 178–181 (1999)
[27] R.J. DeVoe, H. Kalweit, C.A. Leatherdale, and C.R. Williams, Voxel shapes in two-photon microfabrication, Proc. SPIE 4797, 310–316 (2003),
http://dx.doi.org/10.1117/12.459028
[28] S. Inoue and R. Oldenbourg in: Handbook of Optics: Devices, Measurements, and Properties, Vol. 2, ed. M. Bass (McGraw–Hill, 1995) pp. 566–568
[29] Y. Liu, L. Pyrak-Nolte, and D. Nolte, General 3D microporous structures fabricated with two-photon laser machining, Proc. SPIE 6886, 68860Y (2008),
http://dx.doi.org/10.1117/12.760313
[30] D. Wu, N. Fang, C. Sun, and X. Zhang, Stiction problems in releasing of 3D microstructures and its solution, Sensors Actuators A 128, 109–115 (2006),
http://dx.doi.org/10.1016/j.sna.2005.12.041
[31] S.H. Park, K.H. Kim, T.W. Lim, D.Y. Yang, and K.S. Lee, Investigation of three-dimensional pattern collapse owing to surface tension using an imperfection finite element model, Microelectron. Eng. 85, 432–439 (2008),
http://dx.doi.org/10.1016/j.mee.2007.08.003
[32] H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, Top-gathering pillar array of hybrid organic-inorganic material by means of selforganization, Appl. Phys. A 83, 447–451 (2006),
http://dx.doi.org/10.1007/s00339-006-3568-2
[33] J.C. Chachques, J.C. Trainini, N. Lago, M. Cortes-Morichetti, O. Schussler, and A. Carpentier, Myocardial assistance by grafting a new bioartificial upgraded myocardium magnum trial: Clinical feasibility study, Ann. Thorac. Surg. 85, 901–908 (2008),
http://dx.doi.org/10.1016/j.athoracsur.2007.10.052
[34] J. Weng and M. Wang, Producing chitin scaffolds with controlled pore size and interconnectivity for tissue engineering, J. Mater. Sci. Lett. 20, 1401–1403 (2001),
http://dx.doi.org/10.1023/A:1011643511015
[35] S.J. Hollister, R.D. Maddox, and J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomater. 23, 4095–4103 (2002),
http://dx.doi.org/10.1016/S0142-9612%2802%2900148-5
[36] D.E. Ingber, Cellular mechanotransduction: putting all the pieces together again, Faseb J. 20, 811–827 (2006),
http://dx.doi.org/10.1096/fj.05-5424rev
[37] K. Kaladhar and C.P. Sharma, Surface passivation and controlled ligand supplementation of cellular activation processes – strategies for bottom up synthesis of bioactive surfaces, Trends Biomater. Artif. Organs 21, 29–62 (2007),
http://www.sbaoi.org/pdf/vol-21%281%29/2112962.pdf