[PDF]
http://dx.doi.org/10.3952/lithjphys.50201
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 233–239 (2010)
TRANSIENT ABSORPTION OF COPPER
SELENIDE NANOWIRES OF DIFFERENT STOICHIOMETRY
G. Juškaa, V. Gulbinasa, and A. Jagminasb
aInstitute of Physics, Center for Physical Sciences
and Technology, Savanoriu˛ 231, LT-02300 Vilnius, Lithuania
E-mail: ged.juska@gmail.com
bInstitute of Chemistry, Center for Physical
Sciences and Technology, A. Goštauto 9, LT-01108 Vilnius,
Lithuania
Received 19 August 2009; revised 18
April 2010; accepted 17 June 2010
Copper selenide nanowires of
different stoichiometric compositions and having different density
of defects that form intraband states embedded in a porous alumina
layer have been investigated by means of a femtosecond absorption
pump-probe technique. Depending on the formation conditions,
different samples have different absorption spectra in the
near-infrared spectral range, but all of them show bleaching of
the most intense absorption bands, which competes with the induced
absorption of free charge carriers. A transient absorption
relaxation takes place in two steps, with time constants of about
1 ps and several tens of ps. Relative contribution of the fast
relaxation component increases in samples with the higher density
of defect states forming the recombination centres.
Keywords: copper selenide nanowires,
transient absorption
PACS: 71.20.Nr, 62.23.Hj, 78.47.J-, 78.67.Bf
SKIRTINGOS STECHIOMETRIJOS VARIO
SELENIDO NANOVIELŲ NENUOSTOVIOJI SUGERTIS
G. Juškaa, V. Gulbinasa, A. Jagminasb
aFizinių ir technologijos mokslų centro Fizikos
institutas, Vilnius, Lietuva
bFizinių ir technologijos mokslų
centro Chemijos institutas, Vilnius, Lietuva
Vario selenidas – puslaidininkinė medžiaga,
kurios įvairioms stechiometrinėms formoms būdingos savitos optinės
savybės. Išskirtinė vario selenido nanostruktūrų savybė, lyginant
su tūriniu kristalu, – papildoma homogeniškai išplitusi sugerties
juosta, turinti maksimumą ties 1,2 eV. Tyrimo objektas – porėtame
aliuminio oksido sluoksnyje elektrochemiškai nusodinto vario
selenido nanovielų, dėl skirtingų sintezės ir apdorojimo parametrų
(srovės tankio, rūgštingumo, atkaitinimo temperatūros)
besiskiriančių optinėmis savybėmis, stechiometrija (nuo beveik
grynos Cu3Se2 iki nestechiometrinės Cu2−xSe
fazės). Šių nanostruktūrų nenuostoviosios sugerties savybės
1,2–2,88 eV intervale tirtos femtosekundinės laikinės skyros
sugerties žadinimo zondavimo metodika. Tyrimas rodo, kad visais
atvejais nestechiometriniam Cu2−xSe priskiriamai sugerties juostai
artimojoje infraraudonoje srityje būdingas stiprus sugerties
praskaidrėjimas, kuris atsistato po dviejų relaksacinių vyksmų –
spartaus, pikosekundžių trukmės, ir lėtesnio, trunkančio kelis
šimtus pikosekundžių. Regimosios šviesos srityje dominuoja
indukuota sugertis, kurios relaksacijos trukmė analogiška.
Bandiniuose su Cu3Se2 faze beveik visi indukuoti sugerties
pokyčiai atsistato per pirmąsias pikosekundes. Tokia
kontroliuojamų optinių savybių įvairovė gali būti pritaikyta
gaminant netiesinės optikos elementus.
References / Nuorodos
[1] A.N. Skomorokhov, D.M. Trots, M. Knapp, N.N. Bickulova, and H.
Fuess, Structural behaviour of -Cu2−Se
(δ = 0, 0.15, 0.25) in dependence on temperature
studied by synchrotron powder diffraction, J. Alloys Compounds 421,
64–71 (2006),
http://dx.doi.org/10.1016/j.jallcom.2005.10.079
[2] B.A. Mansour, S.E. Demian, and H.A. Zayed, Determination of the
effective mass for highly degenerate copper selenide from
reflectivity measurements, J. Mater. Sci. Mater. Electron. 3,
249–252 (1992),
http://dx.doi.org/10.1007/BF00703036
[3] H. Hiramatsu, I. Koizumi, Ki-Beom Kim, H. Yanagi, T. Kamiya, M.
Hirano, N. Matsunami, and H. Hosono, Characterization of copper
selenide thin film hole-injection layers deposited at room
temperature for use with p-type organic semiconductors, J. Appl.
Phys. 104, 113723 (2008),
http://dx.doi.org/10.1063/1.3039167
[4] R.D. Heyding, The copper/selenium system, Can. J. Chem. 44,
1233–1236 (1966),
http://dx.doi.org/10.1139/v66-183
[5] Kyung Soo Kim, Han-Cheol Jeong, Jung Young Cho, Dong Hee Kang,
Hong Ki Kim, Hee Min Yoo, and Il-Wun Shim, Preparation of copper(Cu)
thin films by MOCVD and their conversion to copper selenide (CuSe)
thin films through selenium vapor deposition, Bull. Korean Chem.
Soc. 24(5), 647–649, (2003),
http://dx.doi.org/10.5012/bkcs.2003.24.5.647
[6] S.R. Gosavi, N.G. Deshpande, Y.G. Gudage, and R. Sharma,
Physical, optical and electrical properties of copper selenide
(CuSe) thin films deposited by solution growth technique at room
temperature, J. Alloys Compounds 448, 344–348 (2008),
http://dx.doi.org/10.1016/j.jallcom.2007.03.068
[7] H. Li, Y. Zhu, S. Avivi, O. Palchik, J. Xiong, Y. Koltypin, V.
Palchik, and A. Gedanken, Sonochemical process for the preparation
of -CuSe
nanocrystals, J. Mater. Chem. 12, 3723–3727 (2002),
http://dx.doi.org/10.1039/b206193g
[8] Al-Mamun and A.B.M.O. Islam, Characterization of copper selenide
thin films deposited by chemical bath deposition technique, Appl.
Surf. Sci. 238, 184–188 (2004),
http://dx.doi.org/10.1016/j.apsusc.2004.05.208
[9] Y. Xie, X. Zheng, X. Jiang, J. Lu, and L. Zhu, Sonochemical
synthesis and mechanistic study of copper selenides Cu2−xSe,
-CuSe, and
Cu3Se2, Inorg. Chem. 41, 387–392
(2002),
http://dx.doi.org/10.1021/ic010108v
[10] Wen S. Chen, J.M. Stewart, and R.A. Mickelsen, Polycrystalline
thin-film Cu2−xSe/CdS solar cell, Appl. Phys.
Lett. 46, 1095 (1985),
http://dx.doi.org/10.1063/1.95773
[11] H. Okimura, T. Matsumae, and R. Makabe, Electrical properties
of Cu2−xSe thin films and their application for
solar cells, Thin Solid Films 71, 53–59 (1980),
http://dx.doi.org/10.1063/1.95773
[12] R.R. Pai, T.T. John, M. Lakshmi, K.P. Vijayakumar, and C.S.
Kartha, Observation of phase transitions in chemical bath deposited
copper selenide thin films through conductivity studies, Thin Solid
Films 473, 208–212 (2005),
http://dx.doi.org/10.1016/j.tsf.2004.04.020
[13] V.S. Gurin, A.A. Alexeenko, S.A. Zolotovskaya, and K.V.
Yumashev, Copper and copper selenide nanoparticles in the sol-gel
matrices: Structural and optical, Mater. Sci. Eng. C 26,
952–955 (2006),
http://dx.doi.org/10.1016/j.msec.2005.09.021
[14] R. Subas, G. Statkutė, I. Mikulskas, R. Ragalevičius, A.
Jagminas, and R. Tomašiūnas, Optical investigation and application
of copper selenide nanowires, Lithuanian J. Phys. 47(3),
361–364 (2007),
http://dx.doi.org/10.3952/lithjphys.47319
[15] Jun Xu, Weixin Zhang, Zeheng Yang, Shaixia Ding, Chunyan Zeng,
Lingling Chen, Qiang Wang, and Shihe Yang, Large-scale synthesis of
long crystalline Cu2−xSe nanowire bundles by
water-evaporation-induced self-assembly and their application in gas
sensing, Adv. Funct. Mater. 19, 1759–1766 (2009),
http://dx.doi.org/10.1002/adfm.200801430
[16] Yang Jiang, Yue Wu, Bo Xie, Shuyuan Zhang, and Yitai Qian, Room
temperature preparation of novel Cu2−xSe nanotubes
in organic solvent, Nanotechnology 15, 283–286 (2004),
http://dx.doi.org/10.1088/0957-4484/15/3/009
[17] G. Juška, A. Jagminas, and V. Gulbinas, Excitation relaxation
in copper selenide nanowires, Phys. Status Solidi B 246,
1082 (2009),
http://dx.doi.org/10.1002/pssb.200844480
[18] A. Jagminas, R. Juškėnas, I. Gailiūtė, G. Statkutė, and R.
Tomašiūnas, Electrochemical synthesis and optical characterization
of copper selenide nanowire arrays within the alumina pores, J.
Cryst. Growth 294, 343 (2006),
http://dx.doi.org/10.1016/j.jcrysgro.2006.06.013
[19] K.V. Yumashev, V.S. Gurin, P.V. Prokoshin, V.B. Prokopenko, and
A.A. Alexeenko, Nonlinear optical properties and laser applications
of copper chalcogenide quantum dots in glass, Phys. Status Solidi B
3, 815 (2001),
http://dx.doi.org/10.1002/%28SICI%291521-3951%28200104%29224:3<815::AID-PSSB815>3.0.CO;2-H
[20] A.M. Malyarevich, K.V. Yumashev, N.N. Posnov, V.P. Mikhailov,
and V.S. Gurin, Optical transient bleaching and induced absorption
of surface-oxidized CuFeS nanoparticles, Appl. Phys. B 70,
111 (2000),
http://dx.doi.org/10.1007/s003400050017
[21] A.M. Malyarevich, K.V. Yumashev, and A.A. Lipovskii,
Semiconductor-doped glass saturable absorbers for near-infrared
solid-state lasers, J. Appl. Phys. 103, 081301 (2008),
http://dx.doi.org/10.1063/1.2905320
[22] A. Jagminas, R. Tomašiūnas, A. Krotkus, R. Juškėnas, and G.
Aleksejenko, Fabrication and phase variation in annealed Cu3Se2
nanowire arrays, Appl. Surf. Sci. 255, 7739–7742 (2009),
http://dx.doi.org/10.1016/j.apsusc.2009.04.161
[23] M.C. Brelle, C.L. Torres-Martinez, J.C. McNulty, R.K. Mehra,
and J.Z. Zhang, Synthesis and characterization of CuxS
nanoparticles. Nature of the infrared band and charge-carrier
dynamics, Pure Appl. Chem. 72, 101 (2000),
http://dx.doi.org/10.1351/pac200072010101
[24] A.M. Malyarevich, K.V. Yumashev, and A.A. Lipovskii,
Semiconductor-doped glass saturable absorbers for near-infrared
solid-state lasers, J. Appl. Phys. 103, 081301 (2008),
http://dx.doi.org/10.1063/1.2905320