[PDF]    http://dx.doi.org/10.3952/lithjphys.50201

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 233–239 (2010)


TRANSIENT ABSORPTION OF COPPER SELENIDE NANOWIRES OF DIFFERENT STOICHIOMETRY
G. Juškaa, V. Gulbinasa, and A. Jagminasb
aInstitute of Physics, Center for Physical Sciences and Technology, Savanoriu˛ 231, LT-02300 Vilnius, Lithuania
E-mail: ged.juska@gmail.com
bInstitute of Chemistry, Center for Physical Sciences and Technology, A. Goštauto 9, LT-01108 Vilnius, Lithuania

Received 19 August 2009; revised 18 April 2010; accepted 17 June 2010

Copper selenide nanowires of different stoichiometric compositions and having different density of defects that form intraband states embedded in a porous alumina layer have been investigated by means of a femtosecond absorption pump-probe technique. Depending on the formation conditions, different samples have different absorption spectra in the near-infrared spectral range, but all of them show bleaching of the most intense absorption bands, which competes with the induced absorption of free charge carriers. A transient absorption relaxation takes place in two steps, with time constants of about 1 ps and several tens of ps. Relative contribution of the fast relaxation component increases in samples with the higher density of defect states forming the recombination centres.
Keywords: copper selenide nanowires, transient absorption
PACS: 71.20.Nr, 62.23.Hj, 78.47.J-, 78.67.Bf


SKIRTINGOS STECHIOMETRIJOS VARIO SELENIDO NANOVIELŲ NENUOSTOVIOJI SUGERTIS
G. Juškaa, V. Gulbinasa, A. Jagminasb
aFizinių ir technologijos mokslų centro Fizikos institutas, Vilnius, Lietuva
bFizinių ir technologijos mokslų centro Chemijos institutas, Vilnius, Lietuva

Vario selenidas – puslaidininkinė medžiaga, kurios įvairioms stechiometrinėms formoms būdingos savitos optinės savybės. Išskirtinė vario selenido nanostruktūrų savybė, lyginant su tūriniu kristalu, – papildoma homogeniškai išplitusi sugerties juosta, turinti maksimumą ties 1,2 eV. Tyrimo objektas – porėtame aliuminio oksido sluoksnyje elektrochemiškai nusodinto vario selenido nanovielų, dėl skirtingų sintezės ir apdorojimo parametrų (srovės tankio, rūgštingumo, atkaitinimo temperatūros) besiskiriančių optinėmis savybėmis, stechiometrija (nuo beveik grynos Cu3Se2 iki nestechiometrinės Cu2−xSe fazės). Šių nanostruktūrų nenuostoviosios sugerties savybės 1,2–2,88 eV intervale tirtos femtosekundinės laikinės skyros sugerties žadinimo zondavimo metodika. Tyrimas rodo, kad visais atvejais nestechiometriniam Cu2−xSe priskiriamai sugerties juostai artimojoje infraraudonoje srityje būdingas stiprus sugerties praskaidrėjimas, kuris atsistato po dviejų relaksacinių vyksmų – spartaus, pikosekundžių trukmės, ir lėtesnio, trunkančio kelis šimtus pikosekundžių. Regimosios šviesos srityje dominuoja indukuota sugertis, kurios relaksacijos trukmė analogiška. Bandiniuose su Cu3Se2 faze beveik visi indukuoti sugerties pokyčiai atsistato per pirmąsias pikosekundes. Tokia kontroliuojamų optinių savybių įvairovė gali būti pritaikyta gaminant netiesinės optikos elementus.


References / Nuorodos


[1] A.N. Skomorokhov, D.M. Trots, M. Knapp, N.N. Bickulova, and H. Fuess, Structural behaviour of β\beta-Cu2−δ\deltaSe (δ = 0, 0.15, 0.25) in dependence on temperature  studied by synchrotron powder diffraction, J. Alloys Compounds 421, 64–71 (2006),
http://dx.doi.org/10.1016/j.jallcom.2005.10.079
[2] B.A. Mansour, S.E. Demian, and H.A. Zayed, Determination of the effective mass for highly degenerate copper selenide from reflectivity measurements, J. Mater. Sci. Mater. Electron. 3, 249–252 (1992),
http://dx.doi.org/10.1007/BF00703036
[3] H. Hiramatsu, I. Koizumi, Ki-Beom Kim, H. Yanagi, T. Kamiya, M. Hirano, N. Matsunami, and H. Hosono, Characterization of copper selenide thin film hole-injection layers deposited at room temperature for use with p-type organic semiconductors, J. Appl. Phys. 104, 113723 (2008),
http://dx.doi.org/10.1063/1.3039167
[4] R.D. Heyding, The copper/selenium system, Can. J. Chem. 44, 1233–1236 (1966),
http://dx.doi.org/10.1139/v66-183
[5] Kyung Soo Kim, Han-Cheol Jeong, Jung Young Cho, Dong Hee Kang, Hong Ki Kim, Hee Min Yoo, and Il-Wun Shim, Preparation of copper(Cu) thin films by MOCVD and their conversion to copper selenide (CuSe) thin films through selenium vapor deposition, Bull. Korean Chem. Soc. 24(5), 647–649, (2003),
http://dx.doi.org/10.5012/bkcs.2003.24.5.647
[6] S.R. Gosavi, N.G. Deshpande, Y.G. Gudage, and R. Sharma, Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature, J. Alloys Compounds 448, 344–348 (2008),
http://dx.doi.org/10.1016/j.jallcom.2007.03.068
[7] H. Li, Y. Zhu, S. Avivi, O. Palchik, J. Xiong, Y. Koltypin, V. Palchik, and A. Gedanken, Sonochemical process for the preparation of α\alpha-CuSe nanocrystals, J. Mater. Chem. 12, 3723–3727 (2002),
http://dx.doi.org/10.1039/b206193g
[8] Al-Mamun and A.B.M.O. Islam, Characterization of copper selenide thin films deposited by chemical bath deposition technique, Appl. Surf. Sci. 238, 184–188 (2004),
http://dx.doi.org/10.1016/j.apsusc.2004.05.208
[9] Y. Xie, X. Zheng, X. Jiang, J. Lu, and L. Zhu, Sonochemical synthesis and mechanistic study of copper selenides Cu2−xSe, β\beta-CuSe, and Cu3Se2, Inorg. Chem. 41, 387–392 (2002),
http://dx.doi.org/10.1021/ic010108v
[10] Wen S. Chen, J.M. Stewart, and R.A. Mickelsen, Polycrystalline thin-film Cu2−xSe/CdS solar cell, Appl. Phys. Lett. 46, 1095 (1985),
http://dx.doi.org/10.1063/1.95773
[11] H. Okimura, T. Matsumae, and R. Makabe, Electrical properties of Cu2−xSe thin films and their application for solar cells, Thin Solid Films 71, 53–59 (1980),
http://dx.doi.org/10.1063/1.95773
[12] R.R. Pai, T.T. John, M. Lakshmi, K.P. Vijayakumar, and C.S. Kartha, Observation of phase transitions in chemical bath deposited copper selenide thin films through conductivity studies, Thin Solid Films 473, 208–212 (2005),
http://dx.doi.org/10.1016/j.tsf.2004.04.020
[13] V.S. Gurin, A.A. Alexeenko, S.A. Zolotovskaya, and K.V. Yumashev, Copper and copper selenide nanoparticles in the sol-gel matrices: Structural and optical, Mater. Sci. Eng. C 26, 952–955 (2006),
http://dx.doi.org/10.1016/j.msec.2005.09.021
[14] R. Subas, G. Statkutė, I. Mikulskas, R. Ragalevičius, A. Jagminas, and R. Tomašiūnas, Optical investigation and application of copper selenide nanowires, Lithuanian J. Phys. 47(3), 361–364 (2007),
http://dx.doi.org/10.3952/lithjphys.47319
[15] Jun Xu, Weixin Zhang, Zeheng Yang, Shaixia Ding, Chunyan Zeng, Lingling Chen, Qiang Wang, and Shihe Yang, Large-scale synthesis of long crystalline Cu2−xSe nanowire bundles by water-evaporation-induced self-assembly and their application in gas sensing, Adv. Funct. Mater. 19, 1759–1766 (2009),
http://dx.doi.org/10.1002/adfm.200801430
[16] Yang Jiang, Yue Wu, Bo Xie, Shuyuan Zhang, and Yitai Qian, Room temperature preparation of novel Cu2−xSe nanotubes in organic solvent, Nanotechnology 15, 283–286 (2004),
http://dx.doi.org/10.1088/0957-4484/15/3/009
[17] G. Juška, A. Jagminas, and V. Gulbinas, Excitation relaxation in copper selenide nanowires, Phys. Status Solidi B 246, 1082 (2009),
http://dx.doi.org/10.1002/pssb.200844480
[18] A. Jagminas, R. Juškėnas, I. Gailiūtė, G. Statkutė, and R. Tomašiūnas, Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores, J. Cryst. Growth 294, 343 (2006),
http://dx.doi.org/10.1016/j.jcrysgro.2006.06.013
[19] K.V. Yumashev, V.S. Gurin, P.V. Prokoshin, V.B. Prokopenko, and A.A. Alexeenko, Nonlinear optical properties and laser applications of copper chalcogenide quantum dots in glass, Phys. Status Solidi B 3, 815 (2001),
http://dx.doi.org/10.1002/%28SICI%291521-3951%28200104%29224:3<815::AID-PSSB815>3.0.CO;2-H
[20] A.M. Malyarevich, K.V. Yumashev, N.N. Posnov, V.P. Mikhailov, and V.S. Gurin, Optical transient bleaching and induced absorption of surface-oxidized CuFeS nanoparticles, Appl. Phys. B 70, 111 (2000),
http://dx.doi.org/10.1007/s003400050017
[21] A.M. Malyarevich, K.V. Yumashev, and A.A. Lipovskii, Semiconductor-doped glass saturable absorbers for near-infrared solid-state lasers, J. Appl. Phys. 103, 081301 (2008),
http://dx.doi.org/10.1063/1.2905320
[22] A. Jagminas, R. Tomašiūnas, A. Krotkus, R. Juškėnas, and G. Aleksejenko, Fabrication and phase variation in annealed Cu3Se2 nanowire arrays, Appl. Surf. Sci. 255, 7739–7742 (2009),
http://dx.doi.org/10.1016/j.apsusc.2009.04.161
[23] M.C. Brelle, C.L. Torres-Martinez, J.C. McNulty, R.K. Mehra, and J.Z. Zhang, Synthesis and characterization of CuxS nanoparticles. Nature of the infrared band and charge-carrier dynamics, Pure Appl. Chem. 72, 101 (2000),
http://dx.doi.org/10.1351/pac200072010101
[24] A.M. Malyarevich, K.V. Yumashev, and A.A. Lipovskii, Semiconductor-doped glass saturable absorbers for near-infrared solid-state lasers, J. Appl. Phys. 103, 081301 (2008),
http://dx.doi.org/10.1063/1.2905320