[PDF]
http://dx.doi.org/10.3952/lithjphys.50202
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 191–199 (2010)
THERMAL LENSING IN HIGH-POWER
DIODE-PUMPED Yb:KGW LASER
D. Stučinskas, R. Antipenkov, and A. Varanavičius
Deptartment of Quantum Electronics, Faculty of Physics, Vilnius
University, Saulėtekio 9 bldg. 3, LT-10222 Vilnius,
Lithuania
E-mail: darius.stucinskas@ff.vu.lt
Received 25 August 2009; revised 4
May 2010; accepted 17 June 2010
We investigated thermal-lensing
effects in a diode end-pumped Yb:KGW laser with slab shaped active
element. Performance and thermal lensing properties for Ng cut
Yb:KGW and Yb:KGW cut for athermal propagation direction are
presented. It is found that crystal cut along athermal direction
provides weaker thermal lens than Ng cut active element, however,
due to anisotropic Yb:KGW characteristics, thermal lens is highly
astigmatic. End bulging contribution to thermal lensing under
intense pump was measured (for Ng cut active element).
Keywords: Yb:KGW, thermal lens,
diode-pumped, athermal orientation
PACS: 42.55.Xi, 42.60.By
ŠILUMINIO LĘŠIO SAVYBĖS DIDELĖS
GALIOS DIODINIO KAUPINIMO Yb:KGV LAZERYJE
D. Stučinskas, R. Antipenkov, A. Varanavičius
Vilniaus universitetas, Vilnius, Lietuva
Pateikiame eksperimentinius kaupinimo ir
lazerinio generavimo indukuoto šiluminio lęšio aktyviajame Yb:KGW
elemente matavimų rezultatus. Aktyviajame lazerio elemente
indukuoto šiluminio lęšio laužiamosios gebos priklausomybė nuo
kaupinimo galios buvo nustatyta matuojant zonduojančio pluošto
bangos fronto pokytį Šako (Shack) ir Hartmano (Hartmann)
matuokliu. Matavimus atlikome su dviejų skirtingų orientacijų
aktyviaisiais elementais:
z
Ng ir atermalinės
z :
Ng =
orientacijos Yb:KGW kristalais. Taip pat buvo atlikti matavimai
siekiant išsiaiškinti aktyviojo elemento galų išsigaubimo įtaką
termolęšio laužiamajai gebai
z
Ng orientacijos aktyviuosiuose elementuose.
References / Nuorodos
[1] W.F. Krupke, Ytterbium solid-state lasers – the first decade,
IEEE J. Sel. Topics Quantum Electron. 6(6), 1287–1296
(2000),
http://dx.doi.org/10.1109/2944.902180
[2] J.H. Hellström, S. Bjurshagen, V. Pasiskevicius, J. Liu, V.
Petrov, and U. Griebner, Efficient Yb:KGW lasers end-pumped by
high-power diode bars, Appl. Phys. B 83, 235–239 (2006),
http://dx.doi.org/10.1007/s00340-006-2171-8
[3] G.R. Holtom, Mode-locked Yb:KGW laser longitudinally pumped by
poliarization-coupled diode bars, Opt. Lett. 31, 2719–2721
(2006),
http://dx.doi.org/10.1364/OL.31.002719
[4] W.F. Krukpe, New laser materials for diode pumped solid state
lasers, Curr. Opin. Solid State Mater. Sci. 4(2), 197–201
(1999),
http://dx.doi.org/10.1016/S1359-0286%2899%2900003-0
[5] J.H. Hellstrom, S. Bjurshagen, and V. Pasiskevicius, Laser
performance and thermal lensing in high-power diode-pumped Yb:KGW
with athermal orientation, Appl. Phys. B 83, 55–59 (2006),
http://dx.doi.org/10.1007/s00340-005-2115-8
[6] F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T.
Schreiber, J. Limpert, and A. Tünnermann, 131 W 220 fs fiber laser
system, Opt. Lett. 30, 2754–2756 (2005),
http://dx.doi.org/10.1364/OL.30.002754
[7] L. Shah, Z. Liu, I. Hartl, G. Imeshev, G.C. Cho, and M.E.
Fermann, High energy femtosecond Yb cubicon fiber amplifier, Opt.
Express 13, 4717–4722 (2005),
http://dx.doi.org/10.1364/OPEX.13.004717
[8] U. Buenting, H. Sayinc, D. Wandt, U. Morgner, and D. Kracht,
Regenerative thin disk amplifier with combined gain spectra
producing 500 μJ sub 200 fs pulses, Opt. Express 17,
8046–8050 (2009),
http://dx.doi.org/10.1364/OE.17.008046
[9] http://www.lightcon.com/index.php?id=29,0,0,1,0,0
[10] http://www.highqlaser.at/en/products/regenerative-amplifiers/femtoregen-series
[11] S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, and P.
Georges, Thermal lensing in diode-pumped ytterbium lasers – part II:
Evaluation of quantum efficiencies and thermo-optic coefficients,
IEEE J. Quantum Electron. 40(9), 1235–1243 (2004),
http://dx.doi.org/10.1109/JQE.2004.833203
[12] S. Biswal, S.P. O’Connor, and S.R. Bowman, Thermo-optical
parameters measured in ytterbium-doped potassium gadolinium
tungstate, Appl. Opt. 44, 3093–3097 (2005),
http://dx.doi.org/10.1364/AO.44.003093
[13] V.V. Filippov, N.V. Kuleshov, and I.T. Bodnar, Negative
thermo-optical coefficients and athermal directions in monoclinic
KGd(WO4)2 and KY(WO4)2
laser host crystals in the visible region, Appl. Phys. B 87(4),
611–614 (2007),
http://dx.doi.org/10.1007/s00340-007-2666-y
[14] M.C. Pujol, X. Mateos, M.A.R. Solé, J. Massons, J. Gavaldà, X.
Solans, F. Díaz, and M. Aguiló, Structure, crystal growth and
physical anisotropy of KYb(WO4)2, a new laser matrix, J. Appl.
Crystallogr. 35, 108–112 (2002),
http://dx.doi.org/10.1107/S0021889801019914
[15] R. Weber, B. Neuenschwender, M. Macdonald, M.B. Roos, and H.P.
Weber, Cooling schemes for longitudinally diode-laser pumped Nd:YAG
rods, IEEE J. Quantum Electron. 34, 1046–1053 (1998),
http://dx.doi.org/10.1109/3.678602
[16] T. Baer, W. Nighan, and M. Keierstead, Modeling of end-pumped,
solid-state lasers, in: Conference on Lasers and Electro-optics,
1993 OSA Technical Digest Series, Vol. 11 (Optical Society of
America, Washington, DC, 1993) p. 638
[17] K. Kleine, L. Gonzalez, R. Bhatia, L. Marshall, and D.
Matthews, High brightness Nd:YVO4 laser for nonlinear optics, in: Advanced
Solid State Lasers, eds. M. Fejer, H. Injeyan, and U. Keller,
OSA Trends in Optics and Photonics Series, Vol. 26 (Optical Society
of America, Washington, DC, 1999) pp. 157–158
[18] F. Hoos, S. Li, T.P. Meyrath, B. Braun, and H. Giessen, Thermal
lensing in an end-pumped Yb:KGW slab laser with high power single
emitter diodes, Opt. Express 16, 6041–6049 (2008),
http://dx.doi.org/10.1364/OE.16.006041