[PDF]    http://dx.doi.org/10.3952/lithjphys.50202

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 191–199 (2010)


THERMAL LENSING IN HIGH-POWER DIODE-PUMPED Yb:KGW LASER
D. Stučinskas, R. Antipenkov, and A. Varanavičius
Deptartment of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio 9 bldg. 3, LT-10222 Vilnius,
Lithuania

E-mail: darius.stucinskas@ff.vu.lt

Received 25 August 2009; revised 4 May 2010; accepted 17 June 2010

We investigated thermal-lensing effects in a diode end-pumped Yb:KGW laser with slab shaped active element. Performance and thermal lensing properties for Ng cut Yb:KGW and Yb:KGW cut for athermal propagation direction are presented. It is found that crystal cut along athermal direction provides weaker thermal lens than Ng cut active element, however, due to anisotropic Yb:KGW characteristics, thermal lens is highly astigmatic. End bulging contribution to thermal lensing under intense pump was measured (for Ng cut active element).
Keywords: Yb:KGW, thermal lens, diode-pumped, athermal orientation
PACS: 42.55.Xi, 42.60.By


ŠILUMINIO LĘŠIO SAVYBĖS DIDELĖS GALIOS DIODINIO KAUPINIMO Yb:KGV LAZERYJE
D. Stučinskas, R. Antipenkov, A. Varanavičius
Vilniaus universitetas, Vilnius, Lietuva

Pateikiame eksperimentinius kaupinimo ir lazerinio generavimo indukuoto šiluminio lęšio aktyviajame Yb:KGW elemente matavimų rezultatus. Aktyviajame lazerio elemente indukuoto šiluminio lęšio laužiamosios gebos priklausomybė nuo kaupinimo galios buvo nustatyta matuojant zonduojančio pluošto bangos fronto pokytį Šako (Shack) ir Hartmano (Hartmann) matuokliu. Matavimus atlikome su dviejų skirtingų orientacijų aktyviaisiais elementais: z \parallel Ng ir atermalinės \anglez : Ng = 44c^{\circ} orientacijos Yb:KGW kristalais. Taip pat buvo atlikti matavimai siekiant išsiaiškinti aktyviojo elemento galų išsigaubimo įtaką termolęšio laužiamajai gebai z \parallel Ng orientacijos aktyviuosiuose elementuose.


References / Nuorodos


[1] W.F. Krupke, Ytterbium solid-state lasers – the first decade, IEEE J. Sel. Topics Quantum Electron. 6(6), 1287–1296 (2000),
http://dx.doi.org/10.1109/2944.902180
[2] J.H. Hellström, S. Bjurshagen, V. Pasiskevicius, J. Liu, V. Petrov, and U. Griebner, Efficient Yb:KGW lasers end-pumped by high-power diode bars, Appl. Phys. B 83, 235–239 (2006),
http://dx.doi.org/10.1007/s00340-006-2171-8
[3] G.R. Holtom, Mode-locked Yb:KGW laser longitudinally pumped by poliarization-coupled diode bars, Opt. Lett. 31, 2719–2721 (2006),
http://dx.doi.org/10.1364/OL.31.002719
[4] W.F. Krukpe, New laser materials for diode pumped solid state lasers, Curr. Opin. Solid State Mater. Sci. 4(2), 197–201 (1999),
http://dx.doi.org/10.1016/S1359-0286%2899%2900003-0
[5] J.H. Hellstrom, S. Bjurshagen, and V. Pasiskevicius, Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation, Appl. Phys. B 83, 55–59 (2006),
http://dx.doi.org/10.1007/s00340-005-2115-8
[6] F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, 131 W 220 fs fiber laser system, Opt. Lett. 30, 2754–2756 (2005),
http://dx.doi.org/10.1364/OL.30.002754
[7] L. Shah, Z. Liu, I. Hartl, G. Imeshev, G.C. Cho, and M.E. Fermann, High energy femtosecond Yb cubicon fiber amplifier, Opt. Express 13, 4717–4722 (2005),
http://dx.doi.org/10.1364/OPEX.13.004717
[8] U. Buenting, H. Sayinc, D. Wandt, U. Morgner, and D. Kracht, Regenerative thin disk amplifier with combined gain spectra producing 500 μJ sub 200 fs pulses, Opt. Express 17, 8046–8050 (2009),
http://dx.doi.org/10.1364/OE.17.008046
[9] http://www.lightcon.com/index.php?id=29,0,0,1,0,0
[10] http://www.highqlaser.at/en/products/regenerative-amplifiers/femtoregen-series
[11] S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, and P. Georges, Thermal lensing in diode-pumped ytterbium lasers – part II: Evaluation of quantum efficiencies and thermo-optic coefficients, IEEE J. Quantum Electron. 40(9), 1235–1243 (2004),
http://dx.doi.org/10.1109/JQE.2004.833203
[12] S. Biswal, S.P. O’Connor, and S.R. Bowman, Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate, Appl. Opt. 44, 3093–3097 (2005),
http://dx.doi.org/10.1364/AO.44.003093
[13] V.V. Filippov, N.V. Kuleshov, and I.T. Bodnar, Negative thermo-optical coefficients and athermal directions in monoclinic KGd(WO4)2 and KY(WO4)2 laser host crystals in the visible region, Appl. Phys. B 87(4), 611–614 (2007),
http://dx.doi.org/10.1007/s00340-007-2666-y
[14] M.C. Pujol, X. Mateos, M.A.R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, and M. Aguiló, Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix, J. Appl. Crystallogr. 35, 108–112 (2002),
http://dx.doi.org/10.1107/S0021889801019914
[15] R. Weber, B. Neuenschwender, M. Macdonald, M.B. Roos, and H.P. Weber, Cooling schemes for longitudinally diode-laser pumped Nd:YAG rods, IEEE J. Quantum Electron. 34, 1046–1053 (1998),
http://dx.doi.org/10.1109/3.678602
[16] T. Baer, W. Nighan, and M. Keierstead, Modeling of end-pumped, solid-state lasers, in: Conference on Lasers and Electro-optics, 1993 OSA Technical Digest Series, Vol. 11 (Optical Society of America, Washington, DC, 1993) p. 638
[17] K. Kleine, L. Gonzalez, R. Bhatia, L. Marshall, and D. Matthews, High brightness Nd:YVO4 laser for nonlinear optics, in: Advanced Solid State Lasers, eds. M. Fejer, H. Injeyan, and U. Keller, OSA Trends in Optics and Photonics Series, Vol. 26 (Optical Society of America, Washington, DC, 1999) pp. 157–158
[18] F. Hoos, S. Li, T.P. Meyrath, B. Braun, and H. Giessen, Thermal lensing in an end-pumped Yb:KGW slab laser with high power single emitter diodes, Opt. Express 16, 6041–6049 (2008),
http://dx.doi.org/10.1364/OE.16.006041