[PDF]
http://dx.doi.org/10.3952/lithjphys.50203
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 201–207 (2010)
FEMTOSECOND VISIBLE LIGHT
INDUCED TWO-PHOTON PHOTOPOLYMERIZATION FOR 3D
MICRO/NANOSTRUCTURING IN PHOTORESISTS AND PHOTOPOLYMERS
M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and
R. Gadonas
Department of Quantum Electronics and Laser Research Centre,
Faculty of Physics, Vilnius University, Saulėtekio 10,
LT-10223 Vilnius, Lithuania
E-mail: mangirdas.malinauskas@ff.vu.lt
Received 20 October 2009; revised
22 January 2010; accepted 18 March 2010
Laser two-photon polymerization
(LTPP) has been widely reported as a tool for three-dimensional
micro/nanofabrication. Femtosecond lasers are employed to form
nanostructures in photosensitive resins with subwavelength
resolution. We demonstrate high throughput large scanning area
LTPP system based on linear motor driven stages combined with
Yb:KGW high repetition rate (312.5 kHz) amplified laser as
irradiation source (515 nm second harmonic’s wavelength).
Femtosecond green light can be focused to a smaller diffraction
limited spot and provides higher structuring resolution comparing
to commonly used Ti:sapphire lasers (operating at NIR wavelengths)
used for LTPP. Additionally, shorter irradiation wavelength
enables to process more of widely used photosensitive
materials. The system capacitates production of nanostructures
having 200 nm lateral resolution with high repeatability. By
modifying focusing optics there is a possibility to scale up the
fabrication: reduction of resolution results in shortening of
fabrication time. The system enables formation of 3D structures
with size varying from tens of microns to tens of millimetres.
Most of the materials commonly used for photopolymerization
technology (various blends of acrylates, hybrid organic–inorganic
materials, and epoxy resins) are well suitable for processing with
the constructed LTPP system.
Keywords: two-photon absorption, laser
processing, photopolymerization, micro/nanofabrication,
three-dimensional structures,
tissue engineering
PACS: 42.50.Hz, 82.30.Cf, 89.20.Bb
FEMTOSEKUNDINIAIS REGIMOSIOS
ŠVIESOS IMPULSAIS INDUKUOTOS DVIFOTONĖS POLIMERIZACIJOS
PANAUDOJIMAS TRIMAČIAMS MIKRO- AR NANODARINIAMS FORMUOTI
FOTOREZISTUOSE IR FOTOPOLIMERUOSE
M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, R.
Gadonas
Vilniaus universitetas, Vilnius, Lietuva
Lazerinė dvifotonė fotopolimerizacija (LDFP) –
unikali technologija, naudojama trimačiam mikro- ar
nanostruktūrizavimui. Toks femtosekundiniais lazeriais paremtas
tiesioginis rašymas leidžia pasiekti mažesnę už bangos ilgį
objektų formavimo skyrą. Pristatoma sukonstruota LDFP sistema,
panaudojant didelio darbinio lauko (150×150×4 mm3) ir
skenavimo greičio (iki 300 mm/s) bandinio pozicionavimo stalus ir
aukšto pasikartojimo dažnio (312,5 kHz) Yb:KGW lazerio
spinduliuotės antrąją harmoniką (515 nm) kaip šviesos šaltinį. Ja
sparčiai ir atkartojamai galima formuoti nanodarinius 200 nm
skersine skyra. Keičiant lazerio pluošto fokusavimo optiką, galima
derinti ir optimizuoti tokio formavimo tikslumą bei našumą. Tai
leidžia gaminti milimetrinių matmenų trimačius darinius, kurie
gali būti taikomi mikrooptikoje, fotonikoje, mikrohidrodinamikoje,
audinių inžinerijoje ir kitur. Tam galima naudoti įvairias UV
litografijoje naudojamas fotojautrias medžiagas (akrilatus,
hibridinius organinius–neorganinius polimerus, epoksidines
dervas). Visa tai leidžia sukurtą LDFP sistemą efektyviai naudoti
sparčiam ir lanksčiam palyginus didelių matmenų mikro- ar
nanodarinių formavimui.
References / Nuorodos
[1] S. Wu, J. Serbin, and M. Gu, Two-photon polymerisation for
three-dimensional micro-fabrication, J. Photochem. Photobiol. A 181(1),
1–11 (2006),
http://dx.doi.org/10.1016/j.jphotochem.2006.03.004
[2] S.H. Park, K.H. Kim, T.W. Lim, D.Y. Yang, and K.S. Lee,
Investigation of three-dimensional pattern collapse owing to surface
tension using an imperfection finite element model, Microelectron.
Eng. 85, 432–439 (2008),
http://dx.doi.org/10.1016/j.mee.2007.08.003
[3] S. Kawata, H.B. Sun, T. Tanaka, and K. Takada, Finer features
for functional microdevices, Nature 412, 697–698 (2001),
http://dx.doi.org/10.1038/35089130
[4] S. Juodkazis, V. Mizeikis, K.K. Seet, M. Mima, and H. Misawa,
Two-photon lithography of nanorods in SU-8 photoresist,
Nanotechnology 16, 846–849 (2005),
http://dx.doi.org/10.1088/0957-4484/16/6/039
[5] B.N. Chichkov, J. Koch, A. Ovsianikov, S. Passinger, C.
Reinhardt, and J. Serbin, Direct-write micro- and nanostructuring
with femtosecond lasers, Mater. Res. Soc. Symp. Proc. 850,
251–258 (2005),
http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=2722&DID=115239&action=detail
[6] L. Li and J.T. Fourkas, Multiphoton polymerization, Mater. Today
10(6), 30–37 (2007),
http://dx.doi.org/10.1016/S1369-7021%2807%2970130-X
[7] W. Haske, V.W. Chen, J.M. Hales,W. Dong, S. Barlow, S.R. Marder,
and J.W. Perry, 65 nm feature sizes using visible wavelength 3-D
multiphoton lithography, Opt. Express 15(6), 3426–3436
(2007),
http://dx.doi.org/10.1364/OE.15.003426
[8] M. Farsari, G. Filippidis, and C. Fotakis, Fabrication of
three-dimensional structures by three-photon polymerization, Opt.
Lett. 30(23), 3180–3182 (2005),
http://dx.doi.org/10.1364/OL.30.003180
[9] K.-S. Lee, R.H. Kim, D.-Y. Yang, and S.H. Park, Advances in 3D
nano/micro-fabrication using two-photon initiated polymerization,
Progr. Polymer Sci. 33, 631–681 (2008),
http://dx.doi.org/10.1016/j.progpolymsci.2008.01.001
[10] www.sartomer.com/proddetail.asp?plid=1&sgid=4&prid=SR368
(2008-07-09)
[11] www.sigmaaldrich.com/Area_of_Interest/Chemistry/Materials_Science/Polymerization_Tools/Initiators.html
(2008-07-10).
[12] www.microresist.de/poster_ormocer.pdf
(2006-05-13)
[13] www.microchem.com/products/pdf/SU8_2002-2025.pdf
(2007-05-04)
[14] H.B. Sun and S. Kawata, Two-photon photopolymerization and 3D
lithographic microfabrication, in: NMR. 3D Analysis.
Photopolymerization, Adv. Polymer Sci. 170, 169–273
(2004),
http://www.springerlink.com/content/c1vdq7qfy8daybrb/?p=5a5e8ee3f6a040839411b05372ba2040&pi=2