[PDF]    http://dx.doi.org/10.3952/lithjphys.50203

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 201–207 (2010)


FEMTOSECOND VISIBLE LIGHT INDUCED TWO-PHOTON PHOTOPOLYMERIZATION FOR 3D MICRO/NANOSTRUCTURING IN PHOTORESISTS AND PHOTOPOLYMERS
M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas
Department of Quantum Electronics and Laser Research Centre, Faculty of Physics, Vilnius University, Saulėtekio 10,
LT-10223 Vilnius, Lithuania

E-mail: mangirdas.malinauskas@ff.vu.lt

Received 20 October 2009; revised 22 January 2010; accepted 18 March 2010

Laser two-photon polymerization (LTPP) has been widely reported as a tool for three-dimensional micro/nanofabrication. Femtosecond lasers are employed to form nanostructures in photosensitive resins with subwavelength resolution. We demonstrate high throughput large scanning area LTPP system based on linear motor driven stages combined with Yb:KGW high repetition rate (312.5 kHz) amplified laser as irradiation source (515 nm second harmonic’s wavelength). Femtosecond green light can be focused to a smaller diffraction limited spot and provides higher structuring resolution comparing to commonly used Ti:sapphire lasers (operating at NIR wavelengths) used for LTPP. Additionally, shorter irradiation wavelength enables to  process more of widely used photosensitive materials. The system capacitates production of nanostructures having 200 nm lateral resolution with high repeatability. By modifying focusing optics there is a possibility to scale up the fabrication: reduction of resolution results in shortening of fabrication time. The system enables formation of 3D structures with size varying from tens of microns to tens of millimetres. Most of the materials commonly used for photopolymerization technology (various blends of acrylates, hybrid organic–inorganic materials, and epoxy resins) are well suitable for processing with the constructed LTPP system.
Keywords: two-photon absorption, laser processing, photopolymerization, micro/nanofabrication, three-dimensional structures,
tissue engineering
PACS: 42.50.Hz, 82.30.Cf, 89.20.Bb


FEMTOSEKUNDINIAIS REGIMOSIOS ŠVIESOS IMPULSAIS INDUKUOTOS DVIFOTONĖS POLIMERIZACIJOS PANAUDOJIMAS TRIMAČIAMS MIKRO- AR NANODARINIAMS FORMUOTI FOTOREZISTUOSE IR FOTOPOLIMERUOSE
M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, R. Gadonas
Vilniaus universitetas, Vilnius, Lietuva

Lazerinė dvifotonė fotopolimerizacija (LDFP) – unikali technologija, naudojama trimačiam mikro- ar nanostruktūrizavimui. Toks femtosekundiniais lazeriais paremtas tiesioginis rašymas leidžia pasiekti mažesnę už bangos ilgį objektų formavimo skyrą. Pristatoma sukonstruota LDFP sistema, panaudojant didelio darbinio lauko (150×150×4 mm3) ir skenavimo greičio (iki 300 mm/s) bandinio pozicionavimo stalus ir aukšto pasikartojimo dažnio (312,5 kHz) Yb:KGW lazerio spinduliuotės antrąją harmoniką (515 nm) kaip šviesos šaltinį. Ja sparčiai ir atkartojamai galima formuoti nanodarinius 200 nm skersine skyra. Keičiant lazerio pluošto fokusavimo optiką, galima derinti ir optimizuoti tokio formavimo tikslumą bei našumą. Tai leidžia gaminti milimetrinių matmenų trimačius darinius, kurie gali būti taikomi mikrooptikoje, fotonikoje, mikrohidrodinamikoje, audinių inžinerijoje ir kitur. Tam galima naudoti įvairias UV litografijoje naudojamas fotojautrias medžiagas (akrilatus, hibridinius organinius–neorganinius polimerus, epoksidines dervas). Visa tai leidžia sukurtą LDFP sistemą efektyviai naudoti sparčiam ir lanksčiam palyginus didelių matmenų mikro- ar nanodarinių formavimui.


References / Nuorodos


[1] S. Wu, J. Serbin, and M. Gu, Two-photon polymerisation for three-dimensional micro-fabrication, J. Photochem. Photobiol. A 181(1), 1–11 (2006),
http://dx.doi.org/10.1016/j.jphotochem.2006.03.004
[2] S.H. Park, K.H. Kim, T.W. Lim, D.Y. Yang, and K.S. Lee, Investigation of three-dimensional pattern collapse owing to surface tension using an imperfection finite element model, Microelectron. Eng. 85, 432–439 (2008),
http://dx.doi.org/10.1016/j.mee.2007.08.003
[3] S. Kawata, H.B. Sun, T. Tanaka, and K. Takada, Finer features for functional microdevices, Nature 412, 697–698 (2001),
http://dx.doi.org/10.1038/35089130
[4] S. Juodkazis, V. Mizeikis, K.K. Seet, M. Mima, and H. Misawa, Two-photon lithography of nanorods in SU-8 photoresist, Nanotechnology 16, 846–849 (2005),
http://dx.doi.org/10.1088/0957-4484/16/6/039
[5] B.N. Chichkov, J. Koch, A. Ovsianikov, S. Passinger, C. Reinhardt, and J. Serbin, Direct-write micro- and nanostructuring with femtosecond lasers, Mater. Res. Soc. Symp. Proc. 850, 251–258 (2005),
http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=2722&DID=115239&action=detail
[6] L. Li and J.T. Fourkas, Multiphoton polymerization, Mater. Today 10(6), 30–37 (2007),
http://dx.doi.org/10.1016/S1369-7021%2807%2970130-X
[7] W. Haske, V.W. Chen, J.M. Hales,W. Dong, S. Barlow, S.R. Marder, and J.W. Perry, 65 nm feature sizes using visible wavelength 3-D multiphoton lithography, Opt. Express 15(6), 3426–3436 (2007),
http://dx.doi.org/10.1364/OE.15.003426
[8] M. Farsari, G. Filippidis, and C. Fotakis, Fabrication of three-dimensional structures by three-photon polymerization, Opt. Lett. 30(23), 3180–3182 (2005),
http://dx.doi.org/10.1364/OL.30.003180
[9] K.-S. Lee, R.H. Kim, D.-Y. Yang, and S.H. Park, Advances in 3D nano/micro-fabrication using two-photon initiated polymerization, Progr. Polymer Sci. 33, 631–681 (2008),
http://dx.doi.org/10.1016/j.progpolymsci.2008.01.001
[10] www.sartomer.com/proddetail.asp?plid=1&sgid=4&prid=SR368 (2008-07-09)
[11] www.sigmaaldrich.com/Area_of_Interest/Chemistry/Materials_Science/Polymerization_Tools/Initiators.html (2008-07-10).
[12] www.microresist.de/poster_ormocer.pdf (2006-05-13)
[13] www.microchem.com/products/pdf/SU8_2002-2025.pdf (2007-05-04)
[14] H.B. Sun and S. Kawata, Two-photon photopolymerization and 3D lithographic microfabrication, in: NMR. 3D Analysis. Photopolymerization, Adv. Polymer Sci. 170, 169–273 (2004),
http://www.springerlink.com/content/c1vdq7qfy8daybrb/?p=5a5e8ee3f6a040839411b05372ba2040&pi=2