[PDF]
http://dx.doi.org/10.3952/lithjphys.50209
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 241–246 (2010)
RESONANT PHOTOEMISSION OF LaNiO3−δ
THIN FILMS
S. Mickevičius
a, S. Grebinskij
a, V.
Bondarenka
a, H. Tvardauskas
a, M. Senulis
a,
V. Lisauskas
a, K. Šliužienė
a, B. Vengalis
a,
E. Baškys
a, and R.L. Johnson
b
aSemiconductor Physics Institute, Center for
Physical Sciences and Technology, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: sigism@pfi.lt
bHamburg Synchrotron Radiation Laboratory HASYLAB at
German Electron Synchrotron DESY, Notkestrasse 85, D-22603
Hamburg, Germany
Received 3 December 2009; revised 4
June 2010; accepted 17 June 2010
Thin LaNiO
3−δ
films with pseudocubic (100) preferred orientation were prepared
by reactive DC magnetron sputtering and annealed at ultra high
vacuum above dehydration temperature. The resonant photoemission
spectroscopy was used to study the surface composition and
electronic structure under La 4d
4f
and Ni 3p
3d
photoexcitation. The resonance features observed in core level and
valence band spectra under La 4d
4f
transition were explained in terms of autoionization process and
lanthanum–oxygen valence band states’ hybridization. No resonant
features were observed in the valence band spectra under Ni 3p
3d
excitation indicating that nickel species are not present at the
LaNiO
3−δ
film surface after heat treatment.
Keywords: rare earth alloys and
compounds, oxide materials, resonant photoelectron spectroscopy
PACS: 68.47.Gh, 81.15.Cd, 82.80.Pv
PLONŲJŲ LaNiO3−δ
SLUOKSNIŲ REZONANSINĖ FOTOEMISIJA
S. Mickevičiusa, S. Grebinskija, V.
Bondarenkaa, H. Tvardauskasa, M. Senulisa,
V. Lisauskasa, K. Šliužienėa, B. Vengalisa,
E. Baškysa, R.L. Johnsonb
aFizinių ir technologijos mokslų centro
Puslaidininkių fizikos institutas, Vilnius, Lietuva
bHamburgo sinchrotroninės spinduliuotės
laboratorija HASYLAB prie Vokietijos elektronų sinchrotrono
DESY, Hamburgas, Vokietija
Plonieji (100) orientacijos LaNiO3−δ
sluoksniai buvo pagaminti nuolatinės srovės magnetroninio
dulkinimo būdu ir atkaitinti ultraaukštame vakuume virš
dehidracijos temperatūros. Sluoksnio elektroninė struktūra ir
cheminė sudėtis tirti rezonansinės fotoemisinės spektroskopijos
metodu, žadinant fotonais ties La 4d–4f ir Ni 3p–3d šuolio
slenksčiu. Rezonansinės savybės, stebimos kamieninių lygmenų ir
valentinės juostos fotoelektronų spektruose žadinant fotonais ties
La 4d–4f šuolio slenksčiu, aiškintinos autojonizaciniais procesais
ir lantano–deguonies valentinės juostos būsenų hibridizacija.
Žadinant fotonais ties Ni 3p–3d šuolio slenskčiu, fotoelektronų
spektruose rezonansas nestebimas. Tai rodo, kad tiriamo LaNiO3−δ
sluoksnio paviršiuje po terminio apdorojimo nikelio koncentracija
tampa nykstamai maža.
References / Nuorodos
[1] J. Choisnet, N. Abadzhieva, P. Stefanov, D. Klissurski, J.M.
Bassat, V. Rives, and L. Minchev, X-ray photoelectron spectroscopy,
temperature-programmed desorption and temperature-programmed
reduction study of LaNiO3 and La2NiO4+δ
catalysts for methanol oxidation, J. Chem. Soc. Faraday Trans. 90,
1987–1991 (1994),
http://dx.doi.org/10.1039/FT9949001987
[2] Y. Li, N. Chen, J. Zhou, S. Song, L. Liu, Z. Yin, and C. Cai,
Effect of the oxygen concentration on the properties of Gd2O3
thin films, J. Cryst. Growth 265, 548–552 (2004),
http://dx.doi.org/10.1016/j.jcrysgro.2004.02.095
[3] V. Bondarenka, S. Grebinskij, V. Lisauskas, S. Mickevičius, K.
Šliužienė, H. Tvardauskas, and B. Vengalis, XPS study of epitaxial
LaNiO3−x films, Lithuanian J. Phys. 46,
95–99 (2006),
http://dx.doi.org/10.3952/lithjphys.46114
[4] D. Briggs and M.P. Seah, Practical Surface Analysis by Auger
and X-ray Photoelectron Spectroscopy (John Wiley & Sons
Ltd, Chichester–New York, 1996),
http://www.amazon.com/Practical-Surface-Analysis-Photoelectron-Spectroscopy/dp/0471953407/
[5] S. Mickevičius, S. Grebinskij, V. Bondarenka, V. Lisauskas, K.
Šliužienė, H. Tvardauskas, B. Vengalis, B.A. Orlowski, V. Osinniy,
and W. Drube, The surface hydro-oxidation of LaNiO3−δ
thin films, Acta Phys. Pol. A 112, 113–120 (2007),
http://przyrbwn.icm.edu.pl/APP/ABSTR/112/a112-1-12.html
[6] H. Samata, D. Kimura, Y. Saeki, Y. Nagata, and T.C. Ozawa,
Synthesis of lanthanum oxyhydroxide single crystals using
anelectrochemical method, J. Cryst. Growth 304, 448–451
(2007),
http://dx.doi.org/10.1016/j.jcrysgro.2007.03.025
[7] V.G. Milt, C.A. Querini, and E.E. Miro, Thermal analysis of
K(x)/La2O3, active catalysts for the abatement
of diesel exhaust contaminants, Thermochim. Acta 404,
177–186 (2003),
http://dx.doi.org/10.1016/S0040-6031(03)00155-2
[8] M. Sakashita and N. Sato, The structure and reactivity of nickel
hydroxide, Bull. Chem. Soc. Jpn. 46, 1983–1987 (1973),
http://dx.doi.org/10.1246/bcsj.46.1983
[9] D.A. Shirley, High-resolution X-ray photoemission spectrum of
the valence bands of gold, Phys. Rev. B 5, 4709–4714 (1972),
http://dx.doi.org/10.1103/PhysRevB.5.4709
[10] O.-P. Sairanen, S. Aksela, and A. Kivimaki, Resonace Auger and
autoionization processes in solid lanthanum after 4d4f
resonant excitation by synchrotron radiation, J. Phys. Cond. Matter
3, 8707 (1991),
http://dx.doi.org/10.1088/0953-8984/3/44/015
[11] J. Park, S.-J. Oh, J.-H. Park, D.M. Kim, and C.-B. Eom,
Electronic structure of epitaxial (Sr,Ca)RuO3 films
studied by photoemission and X-ray absorption spectroscopy, Phys.
Rev. B 69, 085108-1–6 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.085108
[12] J.J. Yeh and I. Lindau, Atomic subshell photoionization cross
sections and asymmetry parameters: 1Z103, At.
Data Nucl. Data Tables 32, 1–155 (1984),
http://dx.doi.org/10.1016/0092-640X(85)90016-6
[13] I. Wilhelmy, A. Lutz, A. Görling, and N. Rösch, Molecular
photoionization cross sections by the Lobatto technique. I. Valence
photoionization, J. Chem. Phys. 100, 2808–2820 (1994),
http://dx.doi.org/10.1063/1.466475
[14] E.W. Plummer, T. Gustafsson, W. Gudart, and D.E. Eastman,
Partial photoionization cross sections of N2 and CO using
synchrotron radiation, Phys. Rev. A 15, 2339–2355 (1997),
http://dx.doi.org/10.1103/PhysRevA.15.2339
[15] J.C. Riviere, F.P. Netzer, G. Rosina, G. Strasser, and J.A.
Matthew, The 4d Auger, Coster–Kronig and recombination spectra of
the lanthanides, J. Electron Spectrosc. Relat. Phenom. 36,
331–375 (1985),
http://dx.doi.org/10.1016/0368-2048(85)80030-X
[16] M. Richter, T. Prescher, M. Meyer, E. von Raven, B. Sonntag,
H.E. Wetzel, and S. Aksela, Solid-state binding, recombination and
Auger energy shifts of rare-earth metals, Phys. Rev. B 38,
1763–1772 (1988),
http://dx.doi.org/10.1103/PhysRevB.38.1763
[17] S. Aksela, O.-P. Sairanen, H. Aksela, G.M. Bancroft, and K.H.
Tan, Normal and resonance LVV Auger spectra of gas-phase SiC4
molecules, Phys. Rev. A 37, 2934–2940 (1988),
http://dx.doi.org/10.1103/PhysRevA.37.2934
[18] G.M. Bancroft, K.H. Tan, O.-P. Sairanen, S. Aksela, and H.
Aksela, Decay processes after resonant excitation of S 2p and F 1s
electrons in SF6 molecules, Phys. Rev. A 41,
3716–3722 (1990),
http://dx.doi.org/10.1103/PhysRevA.41.3716
[19] D.F. Mullica, H.O. Perkins, C.K.C. Lok, and V. Young, The X-ray
photoemission of La(OH)3, J. Electron Spectrosc. Relat.
Phenom. 61, 337–355 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80024-G