[PDF]    http://dx.doi.org/10.3952/lithjphys.50209

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 241–246 (2010)


RESONANT PHOTOEMISSION OF LaNiO3δ\delta THIN FILMS
S. Mickevičiusa, S. Grebinskija, V. Bondarenkaa, H. Tvardauskasa, M. Senulisa, V. Lisauskasa, K. Šliužienėa, B. Vengalisa, E. Baškysa, and R.L. Johnsonb
aSemiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: sigism@pfi.lt
bHamburg Synchrotron Radiation Laboratory HASYLAB at German Electron Synchrotron DESY, Notkestrasse 85, D-22603
Hamburg, Germany

Received 3 December 2009; revised 4 June 2010; accepted 17 June 2010

Thin LaNiO3δ films with pseudocubic (100) preferred orientation were prepared by reactive DC magnetron sputtering and annealed at ultra high vacuum above dehydration temperature. The resonant photoemission spectroscopy was used to study the surface composition and electronic structure under La 4d\longrightarrow4f and Ni 3p\longrightarrow3d photoexcitation. The resonance features observed in core level and valence band spectra under La 4d\longrightarrow4f transition were explained in terms of autoionization process and lanthanum–oxygen valence band states’ hybridization. No resonant features were observed in the valence band spectra under Ni 3p\longrightarrow3d excitation indicating that nickel species are not present at the LaNiO3δ film surface after heat treatment.
Keywords: rare earth alloys and compounds, oxide materials, resonant photoelectron spectroscopy
PACS: 68.47.Gh, 81.15.Cd, 82.80.Pv


PLONŲJŲ LaNiO3δ SLUOKSNIŲ REZONANSINĖ FOTOEMISIJA
S. Mickevičiusa, S. Grebinskija, V. Bondarenkaa, H. Tvardauskasa, M. Senulisa, V. Lisauskasa, K. Šliužienėa, B. Vengalisa, E. Baškysa, R.L. Johnsonb
aFizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva
bHamburgo sinchrotroninės spinduliuotės laboratorija HASYLAB prie Vokietijos elektronų sinchrotrono DESY, Hamburgas, Vokietija

Plonieji (100) orientacijos LaNiO3δ sluoksniai buvo pagaminti nuolatinės srovės magnetroninio dulkinimo būdu ir atkaitinti ultraaukštame vakuume virš dehidracijos temperatūros. Sluoksnio elektroninė struktūra ir cheminė sudėtis tirti rezonansinės fotoemisinės spektroskopijos metodu, žadinant fotonais ties La 4d–4f ir Ni 3p–3d šuolio slenksčiu. Rezonansinės savybės, stebimos kamieninių lygmenų ir valentinės juostos fotoelektronų spektruose žadinant fotonais ties La 4d–4f šuolio slenksčiu, aiškintinos autojonizaciniais procesais ir lantano–deguonies valentinės juostos būsenų hibridizacija. Žadinant fotonais ties Ni 3p–3d šuolio slenskčiu, fotoelektronų spektruose rezonansas nestebimas. Tai rodo, kad tiriamo LaNiO3δ sluoksnio paviršiuje po terminio apdorojimo nikelio koncentracija tampa nykstamai maža.


References / Nuorodos


[1] J. Choisnet, N. Abadzhieva, P. Stefanov, D. Klissurski, J.M. Bassat, V. Rives, and L. Minchev, X-ray photoelectron spectroscopy, temperature-programmed desorption and temperature-programmed reduction study of LaNiO3 and La2NiO4+δ catalysts for methanol oxidation, J. Chem. Soc. Faraday Trans. 90, 1987–1991 (1994),
http://dx.doi.org/10.1039/FT9949001987
[2] Y. Li, N. Chen, J. Zhou, S. Song, L. Liu, Z. Yin, and C. Cai, Effect of the oxygen concentration on the properties of Gd2O3 thin films, J. Cryst. Growth 265, 548–552 (2004),
http://dx.doi.org/10.1016/j.jcrysgro.2004.02.095
[3] V. Bondarenka, S. Grebinskij, V. Lisauskas, S. Mickevičius, K. Šliužienė, H. Tvardauskas, and B. Vengalis, XPS study of epitaxial LaNiO3−x films, Lithuanian J. Phys. 46, 95–99 (2006),
http://dx.doi.org/10.3952/lithjphys.46114
[4] D. Briggs and M.P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley & Sons Ltd, Chichester–New York, 1996),
http://www.amazon.com/Practical-Surface-Analysis-Photoelectron-Spectroscopy/dp/0471953407/
[5] S. Mickevičius, S. Grebinskij, V. Bondarenka, V. Lisauskas, K. Šliužienė, H. Tvardauskas, B. Vengalis, B.A. Orlowski, V. Osinniy, and W. Drube, The surface hydro-oxidation of LaNiO3δ thin films, Acta Phys. Pol. A 112, 113–120 (2007),
http://przyrbwn.icm.edu.pl/APP/ABSTR/112/a112-1-12.html
[6] H. Samata, D. Kimura, Y. Saeki, Y. Nagata, and T.C. Ozawa, Synthesis of lanthanum oxyhydroxide single crystals using anelectrochemical method, J. Cryst. Growth 304, 448–451 (2007),
http://dx.doi.org/10.1016/j.jcrysgro.2007.03.025
[7] V.G. Milt, C.A. Querini, and E.E. Miro, Thermal analysis of K(x)/La2O3, active catalysts for the abatement of diesel exhaust contaminants, Thermochim. Acta 404, 177–186 (2003),
http://dx.doi.org/10.1016/S0040-6031(03)00155-2
[8] M. Sakashita and N. Sato, The structure and reactivity of nickel hydroxide, Bull. Chem. Soc. Jpn. 46, 1983–1987 (1973),
http://dx.doi.org/10.1246/bcsj.46.1983
[9] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5, 4709–4714 (1972),
http://dx.doi.org/10.1103/PhysRevB.5.4709
[10] O.-P. Sairanen, S. Aksela, and A. Kivimaki, Resonace Auger and autoionization processes in solid lanthanum after 4d\longrightarrow4f resonant excitation by synchrotron radiation, J. Phys. Cond. Matter 3, 8707 (1991),
http://dx.doi.org/10.1088/0953-8984/3/44/015
[11] J. Park, S.-J. Oh, J.-H. Park, D.M. Kim, and C.-B. Eom, Electronic structure of epitaxial (Sr,Ca)RuO3 films studied by photoemission and X-ray absorption spectroscopy, Phys. Rev. B 69, 085108-1–6 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.085108
[12] J.J. Yeh and I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters:  1\leqZ\leq103, At. Data Nucl. Data Tables 32, 1–155 (1984),
http://dx.doi.org/10.1016/0092-640X(85)90016-6
[13] I. Wilhelmy, A. Lutz, A. Görling, and N. Rösch, Molecular photoionization cross sections by the Lobatto technique. I. Valence photoionization, J. Chem. Phys. 100, 2808–2820 (1994),
http://dx.doi.org/10.1063/1.466475
[14] E.W. Plummer, T. Gustafsson, W. Gudart, and D.E. Eastman, Partial photoionization cross sections of N2 and CO using synchrotron radiation, Phys. Rev. A 15, 2339–2355 (1997),
http://dx.doi.org/10.1103/PhysRevA.15.2339
[15] J.C. Riviere, F.P. Netzer, G. Rosina, G. Strasser, and J.A. Matthew, The 4d Auger, Coster–Kronig and recombination spectra of the lanthanides, J. Electron Spectrosc. Relat. Phenom. 36, 331–375 (1985),
http://dx.doi.org/10.1016/0368-2048(85)80030-X
[16] M. Richter, T. Prescher, M. Meyer, E. von Raven, B. Sonntag, H.E. Wetzel, and S. Aksela, Solid-state binding, recombination and Auger energy shifts of rare-earth metals, Phys. Rev. B 38, 1763–1772 (1988),
http://dx.doi.org/10.1103/PhysRevB.38.1763
[17] S. Aksela, O.-P. Sairanen, H. Aksela, G.M. Bancroft, and K.H. Tan, Normal and resonance LVV Auger spectra of gas-phase SiC4 molecules, Phys. Rev. A 37, 2934–2940 (1988),
http://dx.doi.org/10.1103/PhysRevA.37.2934
[18] G.M. Bancroft, K.H. Tan, O.-P. Sairanen, S. Aksela, and H. Aksela, Decay processes after resonant excitation of S 2p and F 1s electrons in SF6 molecules, Phys. Rev. A 41, 3716–3722 (1990),
http://dx.doi.org/10.1103/PhysRevA.41.3716
[19] D.F. Mullica, H.O. Perkins, C.K.C. Lok, and V. Young, The X-ray photoemission of La(OH)3, J. Electron Spectrosc. Relat. Phenom. 61, 337–355 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80024-G