[PDF]
http://dx.doi.org/10.3952/lithjphys.50210
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 167–173 (2010)
ANTICIPATING OF CHAOTIC STATES
VIA ANTI-PHASE DIAGONAL COUPLING
T. Pyragienė and K. Pyragas
Semiconductor Physics Institute, Center for Physical Sciences
and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: pyragiene@pfi.lt
Received 17 March 2010; accepted 17
June 2010
Anticipating synchronization is
considered as a tool for a real-time forecasting of chaotic
dynamics. An anti-phase diagonal coupling scheme is introduced in
order to supply the long-term prediction of behaviour of a drive
system. The efficiency of such a scheme is studied analytically
using a simple model of unstable spiral and justified numerically
for two unidirectionally coupled chaotic Rössler systems. The
maximum prediction time attained with our algorithm equals to the
half of characteristic period of chaotic oscillations.
Keywords: synchronization, delay,
anticipating of chaos
PACS: 05.45.Xt, 05.45.Gg, 02.30.Yy
CHAOTINIŲ BŪSENŲ PROGNOZĖ
NAUDOJANT PRIEŠINGOS FAZĖS RYŠĮ
T. Pyragienė, K. Pyragas
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos
institutas, Vilnius, Lietuva
Nagrinėjama prognozuojanti sinchronizacija [3].
Toks sinchronizacijos režimas stebimas siųstuvo–imtuvo
konfigūracijoje, kai siųstuvas veikia imtuvą, o atvirkštinio ryšio
nėra. Imtuvas sinchronizuojasi su siųstuvu ateitimi, t. y. imtuvas
numato siųstuvo dinamikos ateitį. Chaotinių sistemų prognozės
uždaviniuose siekiama gauti kiek įmanoma ilgesnę prognozės trukmę.
Atlikti tyrimai parodė, kad paprastai naudojama diagonali matrica
yra neefektyvi [3], nes šiuo atveju maksimali prognozės trukmė
žymiai mažesnė už būdingąsias dinaminės sistemos trukmes. Neseniai
pasiūlėme nediagonalia ˛ ryšio matricą, kurios konstravimo
algoritmas paremtas fazės delsos kompensacija (FDK) imtuvo
sistemoje [23]. Šis metodas žymiai prailgina prognozės trukmę
tiek, kad ji tampa palyginama su būdinguoju chaotinės sistemos
periodu.
Darbe siūlomas modifikuotas FDK algoritmas: imtuvo sistemoje
uždelstas grįžtamasis ryšys įjungiamas priešfazėje. Ši
modifikacija žymiai supaprastina prognozuojančios sinchronizacijos
režimo eksperimentinį įgyvendinimą. Pasiūlyto algoritmo atveju
prognozės trukmė yra lygi charakteringo chaotinės sistemos periodo
pusei.
References / Nuorodos
[1] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20,
130–141 (1963),
http://dx.doi.org/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
[2] Handbook of Chaos Control, ed. H.G. Schuster (Wiley–VCH,
1998)
[3] H.U. Voss, Anticipating chaotic synchronization, Phys. Rev. E 61,
5115–5119 (2000),
http://dx.doi.org/10.1103/PhysRevE.61.5115
[4] A. Pikovsky, M. Rosemblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences, Cambridge Nonlinear
Science Series 12 (Cambridge University Press, Cambridge, England,
2001),
http://dx.doi.org/10.1017/CBO9780511755743
[5] V.S. Afraimovich, N.N. Verichev, and M.I. Rabinovich,
Stochastically synchronized oscillations in dissipative systems,
Izv. Vyssh. Uchebn. Zaved. Radiofiz. [Sov. Radiophys.] 29,
1050–1060 (1986) [in Russian]
[6] L.M. Pecora and T.L. Carroll, Synchronization in chaotic
systems, Phys. Rev. Lett. 64, 821–824 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.821
[7] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, and C.S.
Zhou, The synchronization of chaotic systems, Phys. Rep. 366,
1–101 (2002),
http://dx.doi.org/10.1016/S0370-1573%2802%2900137-0
[8] N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, and H.D.I. Abarbanel,
Generalized synchronization of chaos in directionally coupled
chaotic systems. Phys. Rev. E 51, 980–994 (1995),
http://dx.doi.org/10.1103/PhysRevE.51.980
[9] R. Mainieri and J. Rehacek, Projective synchronization in
three-dimensional chaotic systems, Phys. Rev. Lett. 82,
3042–3045 (1999),
http://dx.doi.org/10.1103/PhysRevLett.82.3042
[10] M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phase
synchronization of chaotic oscillators, Phys. Rev. Lett. 76,
1804–1807 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.1804
[11] M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, From phase to lag
synchronization in coupled chaotic oscillators, Phys. Rev. Lett. 78,
4193–4196 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.4193
[12] C. Masoller, Anticipation in the synchronization of chaotic
semiconductor lasers with optical feedback, Phys. Rev. Lett. 86,
2782–2785 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2782
[13] S. Tang and J.M. Liu, Experimental verification of anticipated
and retarded synchronization in chaotic semiconductor lasers, Phys.
Rev. Lett. 90, 194101-1–4 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.194101
[14] S. Sivaprakasam, E. M. Shahverdiev, P.S. Spencer, and K.A.
Shore, Experimental demonstration of anticipating synchronization in
chaotic semiconductor lasers with optical feedback, Phys. Rev. Lett.
87, 154101-1–3 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.154101
[15] H.U. Voss, Real-time anticipating of chaotic states of an
electronic circuit, Int. J. Bifurc. Chaos Appl. Sci. Eng. 12,
1619–1625 (2002),
http://dx.doi.org/10.1142/S0218127402005340
[16] M. Ciszak, F. Marino, R. Toral, and S. Balle, Dynamical
mechanism of anticipating synchronization in excitable systems,
Phys. Rev. Lett. 93, 114102-1–4 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.114102
[17] M. Kostur, P. Hänggi, P. Talkner, and J.L. Mateos, Anticipated
synchronization in coupled inertial ratchets with time-delayed
feedback: A numerical study, Phys. Rev. E 72, 036210-1–6
(2005),
http://dx.doi.org/10.1103/PhysRevE.72.036210
[18] M. Ciszak, O. Calvo, C. Masoller, C.R. Mirasso, and R. Toral,
Anticipating the response of excitable systems driven by random
forcing, Phys. Rev. Lett. 90, 204102-1–4 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.204102
[19] M. Ciszak, J.M. Gutiérrez, A.S. Cofino, C. Mirasso, R. Toral,
L. Pesquera, and S. Ortin, Approach to predictability via
anticipated synchronization, Phys. Rev. E 72, 046218-1–8
(2005),
http://dx.doi.org/10.1103/PhysRevE.72.046218
[20] O. Calvo, D.R. Chialvo, V.M. Eguíluz, C. Mirasso, and R. Toral,
Anticipated synchronization: A metaphorical linear view, Chaos 14,
7–13 (2004),
http://dx.doi.org/10.1063/1.1620991
[21] H.U. Voss, Dynamic long-term anticipation of chaotic states,
Phys. Rev. Lett. 87, 014102-1–4 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.014102
[22] C. Mendoza, S. Boccaletti, and A. Politi, Convective
instabilities of synchronization manifolds in spatially extended
systems, Phys. Rev. E 69, 047202-1–4 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.047202
[23] K. Pyragas and T. Pyragienė, Coupling design for a long-term
anticipating synchronization of chaos, Phys. Rev. E 78,
046217-1–4 (2008),
http://dx.doi.org/10.1103/PhysRevE.78.046217
[24] O.E. Rössler, An equation for continuous chaos, Phys. Lett. A 57,
397–398 (1976),
http://dx.doi.org/10.1016/0375-9601%2876%2990101-8
[25] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E.
Knuth, On the Lambert W function, Adv. Comput. Math. 5, 329
(1996),
http://dx.doi.org/10.1007/BF02124750