[PDF]
http://dx.doi.org/10.3952/lithjphys.50212
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 255–260 (2010)
SIMULATION OF TRAFFIC POLLUTION
DISPERSION NEAR ROADWAYS
B. Martinėnas and V. Špakauskas
Faculty of Fundamental Sciences, Vilnius Gediminas Technical
University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
E-mail: vspaka@takas.lt
Received 10 March 2010; revised 30
April 2010; accepted 17 June 2010
A semi-empirical model intended
for simulation of dispersion of aerosol particles with the
diameter larger than 0.05 μm near roadways is proposed.
The pollution source is simulated as a cut-off cylinder, formed
due to traffic pollution on the roadways at the initial time
moment and uniformly filled with aerosol particles. The aerosol
particle transfer by the wind further from the roadway is
simulated, its settling being influenced by the gravitation,
particle buoyancy, and thermal pollutant plume rise effects. Good
agreement between the model and experimental results is obtained.
Keywords: modelling, traffic pollution,
aerosol particles (>0.05 μm), roadside
PACS: 92.60.Sz, 91.62.Rt, 92.60.Mt, 91.67.gp
AUTOTRANSPORTO TERŠALŲ SKLAIDOS
PAKELĖJE MODELIAVIMAS
B. Martinėnas, V. Špakauskas
Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva
Darbe pasiūlytas kvaziempirinis modelis,
skirtas didesnio nei 0,05 μm skersmens dalelių sklaidai
pakelėje modeliuoti ir [2] darbe pateiktiems eksperimentiniams
rezultatams aprašyti. Matematiškai aprašytas aerozolio dalelių
(>0,05 μm) pasiskirstymas taršos šaltinyje leidžia
sumodeliuoti teršalų koncentracijos kaitą transporto magistralės
šalikelėje. Eksperimentiniai duomenys [2] rodo, kad aerozolio
dalelių, priklausančių 0,05–0,1 ir 0,1–0,22 μm frakcijoms,
sklaida priklauso nuo pažemio vėjo greičio. Kai vėjo greitis buvo
1 m/s, abiejų frakcijų aerozolio dalelių koncentracija pradžioje
mažėjo iki 60 m nuo kelio ir vėl padidėjo ties 90 m, o toliau vėl
mažėjo. Kai vėjo greitis 2,5 m/s, 0,05–0,1 μm dydžio
aerozolio dalelių koncentracijos mažėjimas buvo stebimas iki 90 m,
didėjimas – iki 150 m, o toliau vėl mažėjimas. Kai pažemio vėjo
greitis buvo 2,5 m/s, 0,1–0,22 μm dydžio aerozolio dalelių
koncentracija tolstant nuo kelio mažėjo tolygiai. Modeliuojant
taršos šaltinį kaip nupjautinį cilindrą, kuris pradiniu laiko
momentu dėl autotransporto taršos susiformuoja ant kelio ir yra
tolygiai užpildomas aerozolio dalelėmis, vėjo nešamomis tolyn nuo
kelio bei veikiamomis gravitacijos, dalelių plūdrumo ir terminio
kilimo efektų, gauname aerozolio dalelių koncentracijos kaitą
šalikelėje geriau derančią su eksperimentiniais duomenimis [2, 3,
13, 14].
References / Nuorodos
[1] D. Martuzevicius, S.A. Grinshpun, T. Reponen, R.L. Gorny, R.
Shukla, J. Lockey, S. Hu, R. McDonald, P. Biswas, L. Kliucininkas,
and G. LeMasters, Spacial and temporal variations of PM2.5
concentration and composition throughout an urban area with high
freeway density – the Greater Cincinati study, Atmos. Environ. 38,
1091–1105 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2003.11.015
[2] Y. Zhu, W.C. Hinds, S. Kim, and C. Sioutas, Concentration and
size distribution of ultrafine particles near a major highway, J.
Air Waste Manag. Assoc. 52, 1032–1042 (2002),
http://secure.awma.org/journal/Abstract.aspx?id=952
[3] Roadside soil and plant pollution, Information note.
Economy, Environment, Design 73 (SETRA, 2005),
http://www.setra.equipement.gouv.fr/IMG/pdf/US_NI_EEC_073_GB.pdf
[4] N. Li, M. Hao, R.F. Phalen, W.C. Hinds, and A.E. Nel,
Particulate air pollutants and asthma: A paradigm for the role of
oxidative stress in PM-induced adverse health effects, Clin.
Immunol. 109(3), 250–265 (2003),
http://dx.doi.org/10.1016/j.clim.2003.08.006
[5] J. Ovadnevaitė, K. Kvietkus, and A. Maršalka, 2002 summer fires
in Lithuania: Impact on the Vilnius city air quality and the
inhabitants health, Sci. Total Environ. 356, 11–21 (2006),
http://dx.doi.org/10.1016/j.scitotenv.2005.04.013
[6] N.S. Holmes and L. Morawska, A review of dispersion modeling and
its application to the dispersion of particles: An overview of
different dispersion models available, Atmos. Environ. 40,
5902–5928 (2006),
http://dx.doi.org/10.1016/j.atmosenv.2006.06.003
[7] S. Gokhale and M. Khare, A review of deterministic, stochastic
and hybrid vehicular exhaust emission models, Int. J. Transport
Manag. 2, 59–74 (2004),
http://dx.doi.org/10.1016/j.ijtm.2004.09.001
[8] K.S. Rao, R.L. Gunter, J.R. White, and R.P. Hosker, Turbulence
and dispersion modeling near highways, Atmos. Environ. 36,
4337–4346 (2002),
http://dx.doi.org/10.1016/S1352-2310%2802%2900353-9
[9] A.M. Sahlodin, R. Sotudeh-Gharebagh, and Y. Zhu, Modeling of
dispersion near roadways based on the vehicle-induced turbulence
concept, Atmos. Environ. 41, 92–103 (2007),
http://dx.doi.org/10.1016/j.atmosenv.2006.08.004
[10] A. Venkatram, V. Isakov, E. Thoma, and R. Baldauf, Analysis of
air quality data near roadways using a dispersion model, Atmos.
Environ. 41, 9481–9497 (2007),
http://dx.doi.org/10.1016/j.atmosenv.2007.08.045
[11] N. Bukowiecki, J. Dommen, A.S.H. Prevot, R. Richer, E.
Weingartner, and U. Baltensperger, A mobile pollutant measurement
laboratory – measuring gas phase and aerosol ambient concentrations
with high spatial and temporal resolution, Atmos. Environ. 36,
5569–5579 (2002),
http://dx.doi.org/10.1016/S1352-2310%2802%2900694-5
[12] U. Baltensperger, N. Streit, E. Weingartner, S. Nyeki, A.S.H.
Prevot, R. Van Dingen, A. Virkkula, J.P. Putaud, A. Even, H. ten
Brink, A. Blatter, A. Neftel, and H.W. Gäggeler, Urban and rural
aerosol characterization of summer smog events during the PIPAPO
field campaign in Milan, Italy, J. Geophys. Res. 107(D22),
8193 (2002),
http://dx.doi.org/10.1029/2001JD001292
[13] Y. Zhu, W.C. Hinds, S. Kim, S. Shen, and C. Sioutas, Study of
ultrafine particles near a major highway with heavy – duty diesel
traffic, Atmos. Environ. 36, 4323–4335 (2002),
http://dx.doi.org/10.1016/S1352-2310%2802%2900354-0
[14] S. Juknevičius, D. Matyžiūtė-Jodkonienė, and N. Sabienė,
Contamination of soil and grass by heavy metals along the main roads
in Lithuania, Ekologija 53(3), 70–74 (2007),
http://images.katalogas.lt/maleidykla/Eko73/Eko_070_074.pdf
[15] D. Imhol, E. Weingartner, U. Vogt, A. Dreiseidler, E.
Rosenbohm, V. Scheer, R. Vogt, O.J. Nielsen, R. Kurtenbach, U.
Corsmeier, M. Kohler, and U. Baltensperger, Vertical distribution of
aerosol particles and NOx close to a motorway,
Atmos. Environ. 39, 5710–5721 (2005),
http://dx.doi.org/10.1016/j.atmosenv.2004.07.036
[16] W.C. Hinds, C. Sioutas, and Y. Zhu, Relationship between
ultrafine particle size distribution and distance from highway
(National Center for Environ. Res. & Quality Assurance, 2004),
http://cfpub1.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/6984/report/F
[17] P. Linden, Plume dynamics, Mechanical and Environmental
Engineering Laboratory (2010),
http://maecourses.ucsd.edu/labcourse/lecturenotes/Plume_lecture_2010.pdf
[18] D.P. Chock, A simple line-source model for dispersion near
roadways, Atmos. Environ. 12, 823–829 (1978),
http://dx.doi.org/10.1016/0004-6981%2878%2990019-7