[PDF]    http://dx.doi.org/10.3952/lithjphys.50301

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 305–316 (2010)


MODIFICATION OF DELAYED FEEDBACK CONTROL USING ERGODICITY OF CHAOTIC SYSTEMS
V. Pyragas and K. Pyragas
Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kes0.pfi.lt

Received 17 March 2010; revised 8 June 2010; accepted 16 September 2010

We devise a modified delayed feedback control algorithm that allows one to stabilize unstable target states of chaotic systems for any initial conditions placed on a strange attractor. The algorithm is based on ergodicity of chaotic systems. We first let the chaotic system to evolve unperturbed until it approaches the neighbourhood of the target state. Then we activate the controller that stabilizes that target state. We propose a special algorithm that evaluates the closeness of the current state of the system to the target state. For continuous-time systems, this algorithm can be implemented by simple low-pass filters. We demonstrate the efficacy of our algorithm with numerical computations of statistics of successful stabilizations.
Keywords: chaos, dynamical systems, delayed feedback control, ergodicity
PACS: 05.45.Gg, 02.30.Yy, 02.30.Ks


UŽDELSTO GRĮŽTAMOJO RYŠIO VALDYMO MODIFIKACIJA PANAUDOJANT CHAOTINIŲ SISTEMŲ ERGODIŠKUMĄ
V. Pyragas, K. Pyragas
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Pasiūlėme modifikuotą uždelsto grįžtamojo ryšio valdymo algoritmą, kuris stabilizuoja nestabilias periodines orbitas bei rimties taškus, kai sprendinys startuoja iš bet kurių chaotinio atraktoriaus pradinių sąlygų. Algoritmas yra grindžiamas chaotinių sistemų ergodiškumu. Pirma leidžiame chaotinei sistemai evoliucionuoti laisvai tol, kol ji priartės prie norimos orbitos. Tuomet įjungiame valdiklį, kuris stabilizuoja norimą orbitą. Pasiūlėme algoritmą, kuris įvertina esamo sprendinio artumą norimai būsenai. Tolydžiosioms sistemoms šį algoritmą galima įdiegti paprastais žemų dažnių filtrais. Algoritmo veiksmingumą pademonstravome sėkmių statistikos skaitiniais skaičiavimais.

References / Nuorodos


[1] E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos, Phys. Rev. Lett. 64, 1196–1199 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.1196
[2] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170, 421–428 (1992),
http://dx.doi.org/10.1016/0375-9601%2892%2990745-8
[3] Handbook of Chaos Control, 2nd ed., eds. E. Schöll and H.G. Schuster (Wiley–VCH, Weinheim, 2008),
http://www.amazon.co.uk/Handbook-Chaos-Control-Eckehard-Sch%C3%B6ll/dp/3527406050/
[4] K. Pyragas, Delayed feedback control of chaos, Philos. Trans. R. Soc. A 364, 2309–2334 (2006),
http://dx.doi.org/10.1098/rsta.2006.1827
[5] J.E.S. Socolar, D.W. Sukow, and D.J. Gauthier, Stabilizing unstable periodic orbits in fast dynamical systems, Phys. Rev. E 50, 3245–3248 (1994),
http://dx.doi.org/10.1103/PhysRevE.50.3245
[6] K. Pyragas, Control of chaos via extended delay feedback, Phys. Lett. A 206, 323–330 (1995),
http://dx.doi.org/10.1016/0375-9601%2895%2900654-L
[7] M.E. Bleich and J.E.S. Socolar, Stability of periodic orbits controlled by time-delay feedback, Phys. Lett. A 210, 87–94 (1996),
http://dx.doi.org/10.1016/0375-9601%2895%2900827-6
[8] W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and J. Holyst, Limits of time-delayed feedback control, Phys. Lett. A 254, 158–164 (1999),
http://dx.doi.org/10.1016/S0375-9601%2899%2900113-9
[9] K. Pyragas, Analytical properties and optimization of time-delayed feedback control, Phys. Rev. E 66, 026207 (2002),
http://dx.doi.org/10.1103/PhysRevE.66.026207
[10] K. Pyragas, V. Pyragas, and H. Benner, Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation, Phys. Rev. E 70, 056222 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.056222
[11] T. Pyragienė and K. Pyragas, Delayed feedback control of forced self-sustained oscillations, Phys. Rev. E 72, 026203 (2005), 
http://dx.doi.org/10.1103/PhysRevE.72.026203
[12] V. Pyragas and K. Pyragas, Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation, Phys. Rev. E 73, 036215 (2006),
http://dx.doi.org/10.1103/PhysRevE.73.036215
[13] B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll, Refuting the odd number limitation of time-delayed feedback control, Phys. Rev. Lett. 98, 114101 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.114101
[14] H. Nakajima, On analytical properties of delayed feedback control of chaos, Phys. Lett. A 232, 207–210 (1997),
http://dx.doi.org/10.1016/S0375-9601%2897%2900362-9
[15] W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner, Limits of time-delayed feedback control, Phys. Rev. Lett. 78, 203–206 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.203
[16] K. Pyragas, Control of chaos via an unstable delayed feedback controller, Phys. Rev. Lett. 86, 2265–2268 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2265
[17] K. Yamasue and T. Hikihara, Domain of attraction for stabilized orbits in time delayed feedback controlled Duffing systems, Phys. Rev. E 69, 056209 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.056209
[18] K. Yamasue and T. Hikihara, Persistence of chaos in a time-delayed-feedback controlled Duffing system, Phys. Rev. E 73, 036209 (2006),
http://dx.doi.org/10.1103/PhysRevE.73.036209
[19] C. von Loewenich, H. Benner, and W. Just, Experimental relevance of global properties of time-delayed feedback control, Phys. Rev. Lett. 93, 174101 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.174101
[20] W. Just, H. Benner, and C. von Loewenich, On global properties of time-delayed feedback control: Weakly nonlinear analysis, Physica D 199, 33–44 (2004),
http://dx.doi.org/10.1016/j.physd.2004.08.002
[21] K. Höhne, H. Shirahama, C.-U. Choe, H. Benner, K. Pyragas, and W. Just, Global properties in an experimental realization of time-delayed feedback control with an unstable control loop, Phys. Rev. Lett. 98, 214102 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.214102
[22] A. Tamaševičius, G. Mykolaitis, V. Pyragas, and K. Pyragas, Delayed feedback control of periodic orbits without torsion in nonautonomous chaotic systems: Theory and experiment, Phys. Rev. E 76, 026203 (2007),
http://dx.doi.org/10.1103/PhysRevE.76.026203
[23] V. Pyragas and K. Pyragas, Using ergodicity of chaotic systems for improving the global properties of the delayed feedback control method, Phys. Rev. E 80, 067201 (2009),
http://dx.doi.org/10.1103/PhysRevE.80.067201
[24] M. Hénon, A two-dimensional mapping with a strange attractor, Commun. Math. Phys. 50, 69–77 (1976),
http://dx.doi.org/10.1007/BF01608556