[PDF]
http://dx.doi.org/10.3952/lithjphys.50301
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 305–316 (2010)
MODIFICATION OF DELAYED FEEDBACK
CONTROL USING ERGODICITY OF CHAOTIC SYSTEMS
V. Pyragas and K. Pyragas
Semiconductor Physics Institute, Center for Physical Sciences
and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kes0.pfi.lt
Received 17 March 2010; revised 8
June 2010; accepted 16 September 2010
We devise a modified delayed
feedback control algorithm that allows one to stabilize unstable
target states of chaotic systems for any initial conditions placed
on a strange attractor. The algorithm is based on ergodicity of
chaotic systems. We first let the chaotic system to evolve
unperturbed until it approaches the neighbourhood of the target
state. Then we activate the controller that stabilizes that target
state. We propose a special algorithm that evaluates the closeness
of the current state of the system to the target state. For
continuous-time systems, this algorithm can be implemented by
simple low-pass filters. We demonstrate the efficacy of our
algorithm with numerical computations of statistics of successful
stabilizations.
Keywords: chaos, dynamical systems,
delayed feedback control, ergodicity
PACS: 05.45.Gg, 02.30.Yy, 02.30.Ks
UŽDELSTO GRĮŽTAMOJO RYŠIO
VALDYMO MODIFIKACIJA PANAUDOJANT CHAOTINIŲ SISTEMŲ ERGODIŠKUMĄ
V. Pyragas, K. Pyragas
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos
institutas, Vilnius, Lietuva
Pasiūlėme modifikuotą uždelsto grįžtamojo ryšio
valdymo algoritmą, kuris stabilizuoja nestabilias periodines
orbitas bei rimties taškus, kai sprendinys startuoja iš bet kurių
chaotinio atraktoriaus pradinių sąlygų. Algoritmas yra grindžiamas
chaotinių sistemų ergodiškumu. Pirma leidžiame chaotinei sistemai
evoliucionuoti laisvai tol, kol ji priartės prie norimos orbitos.
Tuomet įjungiame valdiklį, kuris stabilizuoja norimą orbitą.
Pasiūlėme algoritmą, kuris įvertina esamo sprendinio artumą
norimai būsenai. Tolydžiosioms sistemoms šį algoritmą galima
įdiegti paprastais žemų dažnių filtrais. Algoritmo veiksmingumą
pademonstravome sėkmių statistikos skaitiniais skaičiavimais.
References / Nuorodos
[1] E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos, Phys.
Rev. Lett. 64, 1196–1199 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.1196
[2] K. Pyragas, Continuous control of chaos by self-controlling
feedback, Phys. Lett. A 170, 421–428 (1992),
http://dx.doi.org/10.1016/0375-9601%2892%2990745-8
[3] Handbook of Chaos Control, 2nd ed., eds. E. Schöll and
H.G. Schuster (Wiley–VCH, Weinheim, 2008),
http://www.amazon.co.uk/Handbook-Chaos-Control-Eckehard-Sch%C3%B6ll/dp/3527406050/
[4] K. Pyragas, Delayed feedback control of chaos, Philos. Trans. R.
Soc. A 364, 2309–2334 (2006),
http://dx.doi.org/10.1098/rsta.2006.1827
[5] J.E.S. Socolar, D.W. Sukow, and D.J. Gauthier, Stabilizing
unstable periodic orbits in fast dynamical systems, Phys. Rev. E 50,
3245–3248 (1994),
http://dx.doi.org/10.1103/PhysRevE.50.3245
[6] K. Pyragas, Control of chaos via extended delay feedback, Phys.
Lett. A 206, 323–330 (1995),
http://dx.doi.org/10.1016/0375-9601%2895%2900654-L
[7] M.E. Bleich and J.E.S. Socolar, Stability of periodic orbits
controlled by time-delay feedback, Phys. Lett. A 210, 87–94
(1996),
http://dx.doi.org/10.1016/0375-9601%2895%2900827-6
[8] W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and
J. Holyst, Limits of time-delayed feedback control, Phys. Lett. A 254,
158–164 (1999),
http://dx.doi.org/10.1016/S0375-9601%2899%2900113-9
[9] K. Pyragas, Analytical properties and optimization of
time-delayed feedback control, Phys. Rev. E 66, 026207
(2002),
http://dx.doi.org/10.1103/PhysRevE.66.026207
[10] K. Pyragas, V. Pyragas, and H. Benner, Delayed feedback control
of dynamical systems at a subcritical Hopf bifurcation, Phys. Rev. E
70, 056222 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.056222
[11] T. Pyragienė and K. Pyragas, Delayed feedback control of forced
self-sustained oscillations, Phys. Rev. E 72, 026203
(2005),
http://dx.doi.org/10.1103/PhysRevE.72.026203
[12] V. Pyragas and K. Pyragas, Delayed feedback control of the
Lorenz system: An analytical treatment at a subcritical Hopf
bifurcation, Phys. Rev. E 73, 036215 (2006),
http://dx.doi.org/10.1103/PhysRevE.73.036215
[13] B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll,
Refuting the odd number limitation of time-delayed feedback control,
Phys. Rev. Lett. 98, 114101 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.114101
[14] H. Nakajima, On analytical properties of delayed feedback
control of chaos, Phys. Lett. A 232, 207–210 (1997),
http://dx.doi.org/10.1016/S0375-9601%2897%2900362-9
[15] W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner,
Limits of time-delayed feedback control, Phys. Rev. Lett. 78,
203–206 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.203
[16] K. Pyragas, Control of chaos via an unstable delayed feedback
controller, Phys. Rev. Lett. 86, 2265–2268 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2265
[17] K. Yamasue and T. Hikihara, Domain of attraction for stabilized
orbits in time delayed feedback controlled Duffing systems, Phys.
Rev. E 69, 056209 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.056209
[18] K. Yamasue and T. Hikihara, Persistence of chaos in a
time-delayed-feedback controlled Duffing system, Phys. Rev. E 73,
036209 (2006),
http://dx.doi.org/10.1103/PhysRevE.73.036209
[19] C. von Loewenich, H. Benner, and W. Just, Experimental
relevance of global properties of time-delayed feedback control,
Phys. Rev. Lett. 93, 174101 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.174101
[20] W. Just, H. Benner, and C. von Loewenich, On global properties
of time-delayed feedback control: Weakly nonlinear analysis, Physica
D 199, 33–44 (2004),
http://dx.doi.org/10.1016/j.physd.2004.08.002
[21] K. Höhne, H. Shirahama, C.-U. Choe, H. Benner, K. Pyragas, and
W. Just, Global properties in an experimental realization of
time-delayed feedback control with an unstable control loop, Phys.
Rev. Lett. 98, 214102 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.214102
[22] A. Tamaševičius, G. Mykolaitis, V. Pyragas, and K. Pyragas,
Delayed feedback control of periodic orbits without torsion in
nonautonomous chaotic systems: Theory and experiment, Phys. Rev. E 76,
026203 (2007),
http://dx.doi.org/10.1103/PhysRevE.76.026203
[23] V. Pyragas and K. Pyragas, Using ergodicity of chaotic systems
for improving the global properties of the delayed feedback control
method, Phys. Rev. E 80, 067201 (2009),
http://dx.doi.org/10.1103/PhysRevE.80.067201
[24] M. Hénon, A two-dimensional mapping with a strange attractor,
Commun. Math. Phys. 50, 69–77 (1976),
http://dx.doi.org/10.1007/BF01608556