[PDF]
http://dx.doi.org/10.3952/lithjphys.50302
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 317–323 (2010)
SURFACE STABILITY OF EPITAXIAL
LaNiO3−
THIN FILMS
S. Mickevičius
a, S. Grebinskij
a, V.
Bondarenka
a,b, H. Tvardauskas
a, M. Senulis
a,
V. Lisauskas
a, K. Šliužienė
a, B. Vengalis
a,
B.A. Orlowski
c, and E. Baškys
a
aSemiconductor Physics Institute, Center for
Physical Sciences and Technology, A. Goštauto 11, LT-01108
Vilnius, Lithuania
bVilnius Pedagogical University, Studentų 39,
LT-08106 Vilnius, Lithuania
cInstitute of Physics of the Polish Academy of
Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
E-mail: sigism@pfi.lt
Received 3 December 2009; revised
23 June 2010; accepted 16 September 2010
Thin LaNiO3−δ
films with pseudocubic (100) preferred orientation were prepared
by reactive DC magnetron sputtering and in situ annealed in O2
and vacuum. X-ray photoelectron spectroscopy (XPS) was used to
determine the variation in composition of the films under high
temperature annealing. The experimental O 1s and La 3d – Ni 2p3/2
spectra of LaNiO3−δ films was
analysed in terms of O2−, O−/(OH)−,
and weakly adsorbed oxygen species. It was shown that the change
in the type of conductivity from metallic to semiconducting one is
accompanied by a marked increase in the intensity of the lateral
(~531 eV) peak of oxygen. The quantitative analyses of La 3d – Ni
2p3/2 spectra show that the Ni/La concentration ratio
significantly decreases after heating above the dehydration
temperature. These variations in conductivity and surface
composition were attributed to the loss of lattice oxygen with
subsequent adsorption of O− and (OH)− anions
and weakly adsorbed oxygen species from ambient air.
Keywords: rare earth alloys and
compounds, oxide materials, XPS, surfaces and interfaces, LaNiO3
thin film
PACS: 68.60.Dv, 79.60.Dp
EPITAKSINIŲ LaNiO3−
PLONŲ SKUOKSNIŲ PAVIRŠIAUS STABILUMAS
S. Mickevičiusa, S. Grebinskija, V.
Bondarenkaa,b, H. Tvardauskasa, M. Senulisa,
V. Lisauskasa, K. Šliužienėa, B. Vengalisa,
B.A. Orlowskic, E. Baškysa
aFizinių ir technologijos mokslų centro
Puslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus pedagoginis universitetas, Vilnius,
Lietuva
cLenkijos mokslų akademijos Fizikos institutas,
Varšuva, Lenkija
Plonieji daugiausia pseudokubine (100) kryptimi
orientuoti LaNiO3−
sluoksniai gaminti reaktyvinio nuolatinės srovės magnetroninio
dulkinimo būdu ir in situ atkaitinti O2 ir vakuume.
Sluoksnių sudėties kitimas kaitinimo metu tirtas Rentgeno
fotoelektroninės spektroskopijos (RFS) metodu. Ištirti
eksperimentiniai LaNiO3−
sluoksnių O 1s ir La 3d – Ni 2p3/2 spektrai, siekiant
nustatyti O2−, O−/(OH)− ir
silpnai surišto deguonies santykius. Metalinio laidumo virtimą
puslaidininkiniu atkaitinant vakuume aukštoje temperatūroje lydi
žymus O 1s spektro 531 eV smailės intensyvumo padidėjimas. Šis
intensyvumo augimas sietinas su deguonies vakansijų koncentracijos
augimu ir lygiagrečiai su deguonies jonų su nutrauktais cheminiais
ryšiais skaičiaus padidėjimu. Kiekybinė La 3d – Ni 2p3/2 spektro
analizė rodo žymų Ni/La koncentracijų santykio sumažėjimą
atkaitinus virš dehidracijos temperatūros. Toks laidumo ir
paviršiaus sudėties kitimas aiškintinas deguonies netekimu
gardelėje su vėlesne O− ir (OH)− anijonų bei
silpnai surišto deguonies adsorbcija iš aplinkos oro.
References / Nuorodos
[1] J.B. Torrance, P. Lacorre, and A.I. Nazzal, Systematic study of
insulator–metal transitions in perovskites RNiO3 (R
= Pr, Nd, Sm, Eu) due to closing of charge-transfer gap, Phys. Rev.
B 45, 8209–8212 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.8209
[2] R. von Helmolt, J. Wecker, R. Holzapfel, L. Schultz, and K.
Samwer, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx
ferromagnetic films, Phys. Rev. Lett. 71, 2331–2333 (1993),
http://dx.doi.org/10.1103/PhysRevLett.71.2331
[3] T. Venkatesan, M. Rajeswari, Z.-W. Dong, S.B. Ogale, and R.
Ramesh, Manganite-based devices: opportunities, bottlenecks and
challenges, Philos. Trans. R. Soc. Lond. A 356, 1661–1680
(1998),
http://dx.doi.org/10.1098/rsta.1998.0240
[4] R. Ramesh, S. Aggarwal, and O. Auciello, Science and technology
of ferroelectric films and heterostructures for non-volatile
ferroelectric memories, Mater. Sci. Eng. R Rep. 32, 191–236
(2001),
http://dx.doi.org/10.1016/S0927-796X%2800%2900032-2
[5] J. Choisnet, N. Abadzhieva, P. Stefanov, D. Klissurski, J.M.
Bassat, V. Rives, and L. Minchev, X-ray photoelectron spectroscopy,
temperature-programmed desorption and temperature-programmed
reduction study of LaNiO3 and La2NiO4+
catalysts for methanol oxidation, J. Chem. Soc. Faraday Trans. 90,
1987–1993 (1994),
http://dx.doi.org/10.1039/ft9949001987
[6] Y. Li, N. Chen, J. Zhou, S. Song, L. Liu, Z. Yin, and C. Cai,
Effect of the oxygen concentration on the properties of Gd2O3
thin films, J. Cryst. Growth 265, 548–552 (2004),
http://dx.doi.org/10.1016/j.jcrysgro.2004.02.095
[7] Q. Zhao, Z.M. Huang, Z.G. Hu, and J.H. Chu, A study on the
thermostability of LaNiO3 films, Surf. Coatings Technol.
192, 336–340 (2005),
http://dx.doi.org/10.1016/j.surfcoat.2004.05.004
[8] K. Horiba, R. Eguchi, M. Taguchi, A. Chainani, A. Kikkawa, Y.
Senba, H. Ohashi, and S. Shin, In situ photoemission study
of LaNiO3 thin films grown by pulsed laser deposition, J.
Electron Spectros. Relat. Phenom. 156, 107–111 (2007),
http://dx.doi.org/10.1016/j.elspec.2006.12.048
[9] V. Vengalis, A.K. Oginskas, V. Lisauskas, R. Butkutė, A.
Maneikis, L. Dapkus, V. Jasutis, and N. Shiktorov, Growth and
investigation of the La1−xCaxMnO3/(LaNiO3,
RuO2) heterostructures, in: Thin Films Deposition of
Oxide Multilayers. Industrial-Scale Processing,
Proceedings of International Conference, Vilnius, Lithuania, 28–29
September 2000, Vilnius, eds. A. Abrutis and B. Vengalis (University
Press, Vilnius, 2000) pp. 45–48
[10] V. Bondarenka, S. Grebinskij, V. Lisauskas, S. Mickevičius, K.
Šliužienė, H. Tvardauskas, and B. Vengalis, XPS study of epitaxial
LaNiO3−x films, Lith. J. Phys. 46,
95–99 (2006),
http://dx.doi.org/10.3952/lithjphys.46114
[11] S. Mickevičius, S. Grebinskij, V. Bondarenka, V. Lisauskas, K.
Šliužienė, H. Tvardauskas, B. Vengalis, B.A. Orlowski, V. Osinniy,
and W. Drube, The surface hydro-oxidation of LaNiO3−x
thin films, Acta Phys. Pol. A 112, 113–120 (2007),
http://przyrbwn.icm.edu.pl/APP/ABSTR/112/a112-1-12.html
[12] J. Haber, J. Stoch, and L. Ungier, X-ray photoelectron spectra
of oxygen in oxides of Co, Ni, Fe and Zn, J. Electron. Spectrosc.
Relat. Phenom. 9, 459–467 (1976),
http://dx.doi.org/10.1016/0368-2048%2876%2980064-3
[13] M.J. Tomellini, X-ray photoelectron spectra of defective nickel
oxide, J. Chem. Soc. Faraday Trans. 84, 3501–3511 (1988),
http://dx.doi.org/10.1039/f19888403501
[14] V.M. Jiménez, A. Fernández, J.P. Espinós, and A.R.
González-Elipe, The state of the oxygen at the surface of
polycrystalline cobalt oxide. J. Electron. Spectrosc. Relat. Phenom.
71, 61–71 (1995),
http://dx.doi.org/10.1016/0368-2048%2894%2902238-0
[15] T.J. Chuang, C.R. Brundle, and D.W. Rice, Interpretation of the
x-ray photoemission spectra of cobalt oxides and cobalt oxide
surfaces, Surf. Sci. 59, 413–429 (1976),
http://dx.doi.org/10.1016/0039-6028%2876%2990026-1
[16] H. Samata, D. Kimura, Y. Saeki, Y. Nagata, and T.C. Ozawa,
Synthesis of lanthanum oxyhydroxide single crystals using
anelectrochemical method, J. Cryst. Growth 304, 448–451
(2007),
http://dx.doi.org/10.1016/j.jcrysgro.2007.03.025
[17] N.S. McIntyre and D.G. Zetaruk, X-ray photoelectron
spectroscopy studies of iron oxides, Anal. Chem. 49,
1521–1529 (1977),
http://dx.doi.org/10.1021/ac50019a016
[18] A.R. Pratt, I.J. Muir, and H.W. Nesbitt, X-ray photoelectron
and Auger electron spectroscopic studies of pyrrhotite and mechanism
of air oxidation, Geochim. Cosmochim. Acta 58, 827–841
(1994),
http://dx.doi.org/10.1016/0016-7037%2894%2990508-8
[19] J.-C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur,
Systematic XPS studies of metal oxides, hydroxides and peroxides,
Phys. Chem. Chem. Phys. 2, 1319–1324 (2000),
http://dx.doi.org/10.1039/a908800h
[20] V.G. Milt, C.A. Querini, and E.E. Miró, Thermal analysis of K(x)/La2O3,
active catalysts for the abatement of diesel exhaust contaminants,
Thermochim. Acta 404, 177–186 (2003),
http://dx.doi.org/10.1016/S0040-6031%2803%2900155-2
[21] M. Sakashita and N. Sato, The structure and reactivity of
nickel hydroxide, Bull. Chem. Soc. Jpn. 46, 1983–1987
(1973),
http://dx.doi.org/10.1246/bcsj.46.1983
[22] J.H. Li, D.Z. Shen, J.Y. Zhang, D.X. Zhao, B.S. Li, Y.M. Lu,
Y.C. Liu and X.W. Fan, Magnetism origin of Mn-doped ZnO
nanoclusters, J. Magn. Magn. Mater. 302, 118–121 (2006),
http://dx.doi.org/10.1016/j.jmmm.2005.08.025
[23] M. Abbate, G. Zampieri, F. Prado, A. Caneiro, J.M.
Gonzalez-Calbet, and M. Vallet-Regi, Electronic structure and
metal-insulator transition in LaNiO3−,
Phys. Rev. B 65, 155101 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.155101