[PDF]
http://dx.doi.org/10.3952/lithjphys.50304
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 335–344 (2010)
BIOMASS BURNING IMPACT ON BLACK
CARBON AEROSOL MASS CONCENTRATION AT A COASTAL SITE: CASE
STUDIES
V. Ulevičius, S. Byčenkienė, N. Špirkauskaitė, and S. Kecorius
Center for Physical Sciences and Technology, Savanorių 231,
LT-02300 Vilnius, Lithuania
E-mail: ulevicv@ktl.mii.lt
Received19 March 2010; revised 23
August 2010; accepted 16 September 2010
During 25 March – 5 April 2010
intense wildfires in the Kaliningrad region (Russia) occurred. The
resultant smoke plume blanketing the Lithuanian western part was
seen in satellite images. Concurrently, an extremely high black
carbon (BC) aerosol mass concentration was observed at the
background Preila site (55
55' N,
21
00' E,
5 m a.s.l., Lithuania). The surface measurements and calculation
of Ångström exponent of the absorption coefficient carried out
separately for shorter and longer wavelengths (i. e.,
=
370–520 nm and
= 590–950 nm) showed that high levels of BC aerosol were related
to the transport of air masses rich in biomass burning products
from the Kaliningrad region caused by active grass burning. During
this event the BC aerosol mass concentration of 1-hour average
reached 13000 ng m
−3, while normally annual mean
concentration values are about 750 ng m
−3. The
transport of the burning products from fire areas is associated
with southeastern flow and strong advection of warm and dry air
from South Europe in the lower troposphere. During the event the
highest mean values of Ångström exponent of the absorption
coefficient
370−520
and
α590−950 were observed (2.0±0.4 and
1.6±0.3, respectively). The mean values of Ångström exponent of
the absorption coefficient during the study period obviously
indicate that a major part of carbon mass in aerosol particles
transferred by the regional air masses comes from the wildfire
location.
Keywords: black carbon aerosol,
aethalometer, biomass burning, Ångström exponent of the absorption
coefficient
PACS: 92.60.Mt, 92.30.Ef, 92.20.Bk
BIOMASĖS DEGINIMO ĮTAKA
JUODOSIOS ANGLIES AEROZOLIO MASĖS KONCENTRACIJAI JŪROS
PAKRANTĖJE: ATVEJO ANALIZĖ
V. Ulevičius, S. Byčenkienė, N. Špirkauskaitė, S. Kecorius
Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
Tirtas juodosios anglies aerozolio masės
koncentracijos padidėjimas Lietuvos pajūryje tolimosios pernašos
metu iš gaisrų apimtų teritorijų Kaliningrado srityje 2010 metų
kovo 25 – balandžio 5 dienomis. Didelis išmetamų teršalų iš gaisrų
apimtų teritorijų kiekis sukūrė dūmų šleifą, nusidriekusį link
Lietuvos jūros pakrantės. Tuo metu Preilos aplinkos užterštumo
tyrimų stotyje buvo stebėta didelė juodosios anglies aerozolio
masės koncentracija. Tyrimų metu Preiloje juodosios anglies
vidutinė valandos masės koncentracija siekė 13000 ng m
−3,
kai vidutinė metinė vertė siekia 750 ng m
−3. Teršalų
koncentracijos matavimai ir sugerties koeficiento Angstremo
eksponentės analizė, atlikta atskirai trumpų ir ilgų bangų
diapazonuose (t. y.
=
370–520 ir 590–950 nm), patvirtino, kad didelė juodosios anglies
aerozolio masės koncentracija buvo susijusi su biomasės degimo
produktų pernaša iš Kaliningrado srities aktyvių gaisrų židinių.
Nustatytos didžiausios vidutinės sugerties koeficiento Angstremo
eksponentės vertės
370−520
ir
α590−950 siekė atitinkamai 2,0±0,4 ir
1,6±0,3. Siejant juodosios anglies aerozolio koncentracijos kaitą
su atmosferos cirkuliacija nustatyta, kad didžiausia koncentracija
buvo susijusi su pietryčių srautu ir stipria šilto ir sauso oro
advekcija į Lietuvos pajūrį iš Pietų Europos.
References / Nuorodos
[1] P.J. Crutzen and M.O. Andreae, Biomass burning in the tropics:
Impact on atmospheric chemistry and biogeochemical cycles, Science 250,
1669–1678 (1990),
http://dx.doi.org/10.1126/science.250.4988.1669
[2] M.O. Andreae and P. Merlet, Emission of trace gases and aerosols
from biomass burning, Global Biogeochem. Cycles 15, 955–966
(2001),
http://dx.doi.org/10.1029/2000GB001382
[3] J.E. Penner, X.Q. Dong, and Y. Chen, Observational evidence of a
change in radiative forcing due to the indirect aerosol effect,
Nature 427, 231–234 (2004),
http://dx.doi.org/10.1038/nature02234
[4] J.S. Reid, T.F. Eck, S.A. Christopher, R. Koppmann, O. Dubovik,
D.P. Eleuterio, B.N. Holben, E.A. Reid, and J. Zhang, A review of
biomass burning emissions, part III: intensive optical properties of
biomass burning particles, Atmos. Chem. Phys. 5, 827–849
(2005),
http://dx.doi.org/10.5194/acp-5-827-2005
[5] D. Rose, A. Nowak, P. Achtert, A. Wiedensohler, M. Hu, M. Shao,
Y. Zhang, M.O. Andreae, and U. Poschl, Cloud condensation nuclei in
polluted air and biomass burning smoke near the mega-city Guangzhou,
China – Part 1: Size-resolved measurements and implications for the
modeling of aerosol particle hygroscopicity and CCN activity, Atmos.
Chem. Phys. Discuss. 8, 17343–17392 (2008),
http://dx.doi.org/10.5194/acpd-8-17343-2008
[6] P. Reutter, H. Su, J. Trentmann, M. Simmel, D. Rose, S.S.
Gunthe, H. Wernli, M.O. Andreae, and U. Poschl, Aerosol- and
updraft-limited regimes of cloud droplet formation: influence of
particle number, size and hygroscopicity on the activation of cloud
condensation nuclei (CCN), Atmos. Chem. Phys. 9, 7067–7080
(2009),
http://dx.doi.org/10.5194/acp-9-7067-2009
[7] T.L. Anderson, R.J. Charlson, S.E. Schwartz, R. Knutti, O.
Boucher, H. Rodhe, and J. Heintzenberg, Climate forcing by aerosols
– a hazy picture, Science 300, 1103–1104 (2007),
http://dx.doi.org/10.1126/science.1084777
[8] V. Ramanathan and G. Carmichael, Global and regional climate
changes due to black carbon, Nat. Geosci. 1(4), 221–227
(2008),
http://dx.doi.org/10.1038/ngeo156
[9] R. Damoah, N. Spichtinger, C. Forster, P. James, I. Mattis, U.
Wandinger, S. Beirle, and A. Stohl, Around the world in 17 days –
hemispheric-scale transport of forest fire smoke from Russia in May
2003, Atmos. Chem. Phys. 4, 1311–1321 (2004),
http://dx.doi.org/10.5194/acp-4-1311-2004
[10] J.V. Niemi, H. Tervahattu, H. Vehkamäki, M. Kulmala, T.
Koskentalo, M. Sillanpää, and M. Rantamäki, Characterization and
source identification of a fine particle episode in Finland, Atmos.
Environ. 38, 5003–5012 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.06.023
[11] J.V. Niemi, H. Tervahattu, H. Vehkamäki, J. Martikainen, L.
Laakso, M. Kulmala, P. Aarnio, T. Koskental, M. Sillanpää, and U.
Makkonen, Characterisation of aerosol particle episodes in Finland
caused by wildfires in Eastern Europe, Atmos. Chem. Phys. 5,
2299–2310 (2005),
http://dx.doi.org/10.5194/acp-5-2299-2005
[12] P.A. Simmonds, R. Manning, P. Derwent, M. Ciais, V. Ramonet, V.
Kazan, and D. Ryall, A burning question: Can recent growth rate
anomalies in the greenhouse gases be attributed to large-scale
biomass burning events? Atmos. Environ. 39, 2513–2517
(2005),
http://dx.doi.org/10.1016/j.atmosenv.2005.02.018
[13] Y.J. Kaufman, D. Tanré, and O. Boucher, A satellite view of
aerosols in the climate system, Nature 419, 215–223 (2002),
http://dx.doi.org/10.1038/nature01091
[14] H. Huntrieser, J. Heland, H. Schlager, C. Forster, A. Stohl, H.
Aufmhoff, F. Arnold, H.E. Scheel, M. Campana, S. Gilge, R. Eixmann,
and O. Cooper, Intercontinental air pollution transport from North
America to Europe: Experimental evidence from airborne measurements
and surface observations, J. Geophys. Res. 110, D01305
(2005),
http://dx.doi.org/10.1029/2004JD005045
[15] M. Sillanpää, A. Frey, R. Hillamo, A.S. Pennanen, and R.O.
Salonen, Organic, elemental and inorganic carbon in particulate
matter of six urban environments in Europe, Atmos. Chem. Phys. 5,
2869–2879 (2005),
http://dx.doi.org/10.5194/acp-5-2869-2005
[16] S. Saarikoski, M. Sillanpää, M. Sofiev, H. Timonen, K. Saarnio,
K. Teinilä, A. Karppinen, J. Kukkonen, and R. Hillamo, Chemical
composition of aerosols during a major biomass burning episode over
northern Europe in spring 2006: experimental and modelling
assessments, Atmos. Environ. 41, 3577–3589 (2007),
http://dx.doi.org/10.1016/j.atmosenv.2006.12.053
[17] V. Ulevičius, S. Byčenkienė, V. Remeikis, A. Garbaras, S.
Kecorius, J. Andriejauskienė, D. Jasinevičienė, and G. Mocnik,
Characterization of pollution events in the East Baltic region
affected by regional biomass fire emissions, Atmos. Res. (2010) [in
press],
http://dx.doi.org/10.1016/j.atmosres.2010.03.021
[18] U. Dusek, G.P. Frank, L. Hildebrandt, J. Curtius, J. Schneider,
S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann,
and M.O. Andreae, Size matters more than chemistry for
cloud-nucleating ability of aerosol particles, Science 312,
1375–1378 (2006),
http://dx.doi.org/10.1126/science.1125261
[19] M. Kendall, R.S. Hamilton, J.Watt, and I.D.Williams,
Characterisation of selected speciated organic compounds associated
with particulate matter in London, Atmos. Environ. 35,
2483–2495 (2001),
http://dx.doi.org/10.1016/S1352-2310%2800%2900431-3
[20] O. Dubovik, B. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D.
King, D. Tanre, and I. Slutsker, Variability of absorption and
optical properties of key aerosol types observed in worldwide
locations, J. Atmos. Sci. 59, 590–608 (2002),
http://dx.doi.org/10.1175/1520-0469%282002%29059<0590:VOAAOP>2.0.CO;2
[21] T.F. Eck, B.N. Holben, D.E. Ward, M.M. Mukelabai, O. Dubovik,
A. Smirnov, J.S. Schafer, N.C. Hsu, S.J. Piketh, A. Qeface, J.L.
Roux, R.J. Swap, and I. Slutsker, Variability of biomass burning
aerosol optical characteristics in southern Africa during the SAFARI
2000 dry season campaign and a comparison of single scattering
albedo estimates from radiometric measurements, J. Geophys. Res.
Atmos. 108(D13), 8477 (2003),
http://dx.doi.org/10.1029/2002JD002321
[22] B.E. Anderson, W.B. Grant, G.L. Gregory, E.V. Browell,
J.E.Collins Jr., G.W. Sachse, D.R. Bagwell, C.H. Hudgins, D.R.
Blake, and N.J. Blake, Aerosols from biomass burning over the
tropical South Atlantic region: Distributions and impacts, J.
Geophys. Res. 101, 24117–24137 (1996),
http://dx.doi.org/10.1029/96JD00717
[23] F. Echalar, P. Artaxo, J.V. Martins, M. Yamasoe, and F. Gerab,
Long-term monitoring of atmospheric aerosols in the Amazon Basin:
Source identification and apportionment, J. Geophys. Res. 103(31),
849–864 (1998),
http://dx.doi.org/10.1029/98JD01749
[24] J. Haywood, S. Osborne, P. Francis, A. Keil, P. Formenti, M.O.
Andreae, and P.H. Kaye, The mean physical and optical properties of
regional haze dominated by biomass burning aerosol measured from the
C-130 aircraft during SAFARI 2000, J. Geophys. Res. Atmos. 108(D13),
8473 (2003),
http://dx.doi.org/10.1029/2002JD002226
[25] P. Formenti, O. Boucher, T. Reiner, D. Sprung, M.O. Andreae, M.
Wendisch, H. Wex, D. Kindred, M. Tzortziou, A. Vasaras, and C.
Zerefos, STAAARTE-MED 1998 summer airborne measurements over the
Aegean Sea 2. Aerosol scattering and absorption, and radiative
calculations, J. Geophys. Res. Atmos. 107(D21), 4551 (2002),
http://dx.doi.org/10.1029/2001JD001536
[26] L. Giglio, Characterization of the tropical diurnal fire cycle
using VIRS and MODIS observations, Remote Sens. Environ. 108,
407–421 (2007),
http://dx.doi.org/10.1016/j.rse.2006.11.018
[27] J.S. Reid, E.M. Prins, D.L. Westphal, C.C. Schmidt, K.A.
Richardson, S.A. Christopher, T.F. Eck, E.A. Reid, C.A. Curtis, and
J.P. Hoffman, Real-time monitoring of South American smoke particle
emissions and transport using a coupled remote sensing/box-model
approach, Geophys. Res. Lett. 31, L06107 (2004),
http://dx.doi.org/10.1029/2003GL018845
[28] R. Honrath, R.C. Owen, M. Val Martin, J.S. Reid, K. Lapina, P.
Fialho, M.P. Dziobak, J. Kleissl, and D.L. Westphal, Regional and
hemispheric impacts of anthropogenic and biomass burning emissions
on summertime CO and O3 in the North Atlantic lower free
troposphere, J. Geophys. Res. Atmos. 109(D), D24310 (2004),
http://dx.doi.org/10.1029/2004JD005147
[29] R.R. Draxler and G.D. Rolph, HYSPLIT (HYbrid
Single-Particle Lagrangian Integrated Trajectory) Model access via
NOAA ARL READY Website http://ready.arl.noaa.gov/HYSPLIT.php
(NOAA Air Resources Laboratory, Silver Spring, MD, 2003)
[30] G.D. Rolph, Real-time Environmental Applications and
Display sYstem (READY) Website http://ready.arl.noaa.gov
(NOAA Air Resources Laboratory, Silver Spring, MD, 2010)
[31] A. Virkkula, T. Mäkelä, R. Hillamo, T. Yli-Tuomi, A. Hirsikko,
K. Hämeri, and I.K. Koponen, A simple procedure for correcting
loading effects of aethalometer data, J. Air Waste Manag. Assoc. 57,
1214–1222 (2007),
http://dx.doi.org/10.3155/1047-3289.57.10.1214
[32] J. Sandradewi, A.S.H. Prévôt, E. Weingartner, R. Schmidhauser,
M. Gysel, and U. Baltensperger, A study of wood burning and traffic
aerosols in an Alpine valley using a multi-wavelength Aethalometer,
Atmos. Environ. 42, 101–112 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2007.09.034
[33] J. Andriejauskienė, V. Ulevičius, M. Bizjak, N. Špirkauskaitė,
and S. Byčenkienė, Black carbon aerosol at the background site in
the coastal zone of the Baltic Sea, Lith. J. Phys. 48,
183–194 (2008),
http://dx.doi.org/10.3952/lithjphys.48210
[34] A. Garbaras, J. Andriejauskienė, R. Barisevičiūtė, and V.
Remeikis, Tracing of atmospheric aerosol sources using stable carbon
isotopes, Lith. J. Phys. 48, 259–264 (2008),
http://dx.doi.org/10.3952/lithjphys.48309
[35] T.W. Kirchstetter, T. Novakov, and P.V. Hobbs, Evidence that
the spectral dependence of light absorption by aerosols is affected
by organic carbon, J. Geophys. Res. Atmos. 109, D21208
(2004),
http://dx.doi.org/10.1029/2004JD004999
[36] M. Schnaiter, H. Horvath, O. Möhler, K.H. Naumann, H. Saafhoff,
and O.W. Schock, UV–VIS–NIR spectral optical properties of soot and
soot-containing aerosols, J. Aerosol Sci. 34, 1421–1444
(2003),
http://dx.doi.org/10.1016/S0021-8502%2803%2900361-6
[37] M. Schnaiter, C. Linke, O. Möhler, K.H. Naumann, H. Saathoff,
R. Wagner, U. Schurath, and B. Wehner, Absorption amplification of
black carbon internally mixed with secondary organic aerosols. J.
Geophys. Res. Atmos. 110, D19204 (2005),
http://dx.doi.org/10.1029/2005JD006046
[38] D.E. Day, J.L. Hand, C.M. Carrico, G. Engling, and W.C. Malm,
Humidification factors from laboratory studies of fresh smoke from
biomass fuels, J. Geophys. Res. Atmos. 111, D22202 (2006),
http://dx.doi.org/10.1029/2006JD007221