[PDF]
http://dx.doi.org/10.3952/lithjphys.50305
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 267–303 (2010)
Review
TWO-DIMENSIONAL OPTICAL
SPECTROSCOPY OF MOLECULAR AGGREGATES
V. Butkusa, D. Abramaviciusa,b, A. Gelzinisa,
and L. Valkunasa,c
aDepartment of Theoretical Physics, Faculty of
Physics of Vilnius University, Saulėtekio 9, LT-10222 Vilnius,
Lithuania
E-mail: vytautas.butkus@ff.vu.lt
bState Key Laboratory of Supramolecular Complexes,
Jilin University, 2699 Qianjin Street, Changchun 130012, PR
China
cCenter for Physical Sciences and Technology,
Savanorių 231, LT-02300 Vilnius, Lithuania
Received 10 September 2010;
accepted 16 September 2010
An overview of the theoretical
background for the novel spectroscopic tool – two-dimensional (2D)
optical spectroscopy – is presented. Principles of nonlinear
polarization induction, signal generation, and detection are
described. Concepts of heterodyned four-wave mixing experimental
technique and 2D spectra construction are detailed and the scheme
of third-order polarization calculation is consistently
introduced. The system response function theory is formulated for
a general multi-level quantum system considering the system-field
interaction perturbatively. Equations of motion for the system
density operator relevant to the third-order response are
presented. Basic quantum systems of a two-level atom, two-level
molecule, and a three-level system are considered and analytic
expressions of the third-order signal are derived at certain
limits. Molecular complexes are described using the Frenkel
exciton approach. 2D spectra of the excitonically-coupled dimers
of two-level and three-level chromophores are presented.
Possibilities of extraction of separate spectral elements as well
as performing quantum control by the two-colour 2D spectroscopy
for the dimer of excitonically-coupled two-level systems are
demonstrated. Effects of motional narrowing of one-dimensional
J-aggregates of pseudoisocyanine and construction of the J-band as
well as highly-efficient excitonic energy transfer in
photosynthetic Fenna–Matthews–Olson complex are illustrated by
simulated time-resolved 2D spectra.
Keywords: optical two-dimensional
spectroscopy, four-wave mixing, molecular excitons
PACS: 78.47.nj, 78.47.Fg, 71.35.Aa
DVIMATĖ OPTINĖ MOLEKULINIŲ
AGREGATŲ SPEKTROSKOPIJA
V. Butkusa, D. Abramavičiusa,b, A. Gelžinisa,
L. Valkūnasa,c
aVilniaus universiteto Fizikos fakulteto Teorinės
fizikos katedra, Vilnius, Lietuva
bJilin universiteto Molekulinių darinių
laboratorija, Čangčunas, Kinijos Liaudies Respublika
cFizikos institutas, Fizinių ir technologijos
mokslų centras, Vilnius, Lietuva
Dvimatė elektroninė spektroskopija yra vienas
naujausių bei pažangiausių daugiaimpulsinės spektroskopijos
metodų, šiuo metu intensyviai naudojamas analizuojant vyksmus itin
sudėtinguose fotosintetiniuose dariniuose. Šis metodas leidžia
geriau suprasti koherentiškumo gesimo ir užpildų pernašos vyksmus,
stebimus sudėtingose daugiachromoforinėse eksitoninio ryšio
sistemose.
Pagrindiniai šio spektroskopijos metodo privalumai yra puiki
laikinė skiriamoji geba (stebimi femtosekundžių trukmės vyksmai)
bei koherentinės ir nekoherentinės prigimties sąveikaujančių
sistemų evoliucijų atskyrimas. Dėl pastarosios savybės galima
stebėti sužadinimo pernašą sistemos viduje, itin efektyvų
energijos perdavimą lemiančias koherentiškumo osciliacijas bei dar
geriau išskirti nevienalytiškai išplitusias spektro linijas.
Iš (bakterio)chlorofilų sudarytuose bakterijų ir augalų
fotosintezės reakciniuose centruose, šviesos energijos surinkimo
bei perdavimo kompleksuose chromoforų skaičius yra didelis, tad
iki šiol naudota supaprastinta netiesinio atsako teorija,
išvystyta daug mažesnėms struktūroms, pavyzdžiui, dimui, aprašyti,
nėra tiesiogiai taikytina. Tokių kompleksų modeliavimas tampa
sudėtingas, todėl taikomos ˛ivairios aproksimacijos, naudojamas
eksitoninis vaizdavimas.
Šiame darbe yra pristatoma bendra keturių bangų maišymo
eksperimento modeliavimo schema bei išvestos trečios eilės atsako
funkcijos išraiškos daugelio lygmenų eksitoninei sistemai, trumpai
aptartos alternatyvios teorijos, paremtos neperturbaciniu
kinetinės tankio matricos lygties sprendimu. Pateikiami
sumodeliuoti elementarių kvantinių sistemų dvimačiai spektrai bei
analizinės trečios eilės atsako išraiškos. Atskirai aptariami
dimerų spektrai, kai juos sudarančios chromoforos aproksimuojamos
kaip dviejų arba trijų lygmenų sistemos. Dviejų lygmenų chromoforų
dimero atveju demonstruojamos galimybės pritaikyti dvispalvę
dvimatę spektroskopiją siekiant išskirti spektrinius elementus bei
indukuoti skirtingus fizikinius vyksmus sistemoje. Tokiųmatavimų
rezultatai sudarytų prielaidas įvertinti makroskopinius
nagrinėjamos sitemos parametrus – rezonansinę sąveiką, dipolinius
momentus. Dvimatės spektroskopijos pritaikymui molekuliniams
agregatams pateikiami vienmačio tiesinio J agregato bei
fotosintetinio Fenna–Matthews–Olson (FMO) komplekso sugerties ir
dvimačiai spektrai. Iš sumodeliuotų FMO komplekso spektrų galima
daryti išvadas apie sužadinimo perdavimo tarp chromoforų
scenarijus sistemoje bei koherentiškumo fliuktuacijas, kurios,
manoma, lemia itin efektyvų energijos perdavimą sistemoje.
References / Nuorodos
[1] D.P. Weitekamp, K.Duppen, and D.A. Wiersma, Delayed
four-wave-mixing spectroscopy in molecular crystals: A
nonperturbative approach, Phys. Rev. A 27, 3089–3111 (1983),
http://dx.doi.org/10.1103/PhysRevA.27.3089
[2] M. Cho, N.F. Scherer, G.R. Fleming, and S. Mukamel, Photon
echoes and related four-wave-mixing spectroscopies using
phase-locked pulses, J. Chem. Phys. 96, 5618–5629 (1992),
http://dx.doi.org/10.1063/1.462686
[3] M. Cho, H.M. Vaswani, T. Brixner, J. Stenger, and G.R. Fleming,
Exciton analysis in 2d electronic spectroscopy, J. Phys. Chem. B 109,
10542–10556 (2005),
http://dx.doi.org/10.1021/jp050788d
[4] D. Zigmantas, E.L. Read, T. Mančal, T. Brixner, A.T. Gardiner,
R.J. Cogdell, and G.R. Fleming, Two-dimensional electronic
spectroscopy of the B800-B820 light-harvesting complex, Proc. Natl.
Acad. Sci. USA 103, 12672–12677 (2006),
http://dx.doi.org/10.1073/pnas.0602961103
[5] V.I. Prokhorenko, A. Halpin, and R.J.D. Miller,
Coherently-controlled two-dimensional photon echo electronic
spectroscopy, Opt. Express 17, 9764–9779 (2009),
http://dx.doi.org/10.1364/OE.17.009764
[6] B.S. Prall, D.Y. Parkinson, G.R. Fleming, M. Yang, and N.
Ishikawa, Two-dimensional optical spectroscopy: Two-color photon
echoes of electronically coupled phthalocyanine dimers, J. Chem.
Phys. 120, 2537–2540 (2004),
http://dx.doi.org/10.1063/1.1644794
[7] M. Cho and G.R. Fleming, The integrated photon echo and
solvation dynamics. II. Peak shifts and two-dimensional photon echo
of a coupled chromophore system, J. Chem. Phys. 123, 114506
(2005),
http://dx.doi.org/10.1063/1.1955444
[8] P. Kjellberg, B. Brüggemann, and T. Pullerits, Two-dimensional
electronic spectroscopy of an excitonically coupled dimer, Phys.
Rev. B 74, 024303 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.024303
[9] D.V. Voronine, D. Abramavicius, and S. Mukamel, Coherent control
of cross-peaks in chirality-induced two-dimensional optical signals
of excitons, J. Chem. Phys. 125, 224504 (2006),
http://dx.doi.org/10.1063/1.2397686
[10] A.V. Pisliakov, T. Mančal, and G.R. Fleming, Two-dimensional
optical three-pulse photon echo spectroscopy. II. signatures of
coherent electronic motion and exciton population transfer in dimer
two-dimensional spectra, J. Chem. Phys. 124, 234505 (2006),
http://dx.doi.org/10.1063/1.2200705
[11] Y.-C. Cheng and G.R. Fleming, Coherence quantum beats in
two-dimensional electronic spectroscopy, J. Phys. Chem. A 112,
4254–4260 (2008),
http://dx.doi.org/10.1021/jp7107889
[12] D. Abramavicius, V. Butkus, J. Bujokas, and L. Valkunas,
Manipulation of two-dimensional spectra of excitonically coupled
molecules by narrow-bandwidth laser pulses, Chem. Phys. 372,
22–32 (2010),
http://dx.doi.org/10.1016/j.chemphys.2010.04.015
[13] T. Brixner, J. Stenger, H.M. Vaswani, M. Cho, R.E. Blankenship,
and G.R. Fleming, Two-dimensional spectroscopy of electronic
couplings in photosynthesis, Nature 434, 625–628 (2005),
http://dx.doi.org/10.1038/nature03429
[14] G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mančal, Y.C.
Cheng, R.E. Blankenship, and G.R. Fleming, Evidence for wavelike
energy transfer through quantum coherence in photosynthetic systems,
Nature 446, 782 (2007),
http://dx.doi.org/10.1038/nature05678
[15] V.I. Prokhorenko, A.R. Holzwarth, F.R. Nowak, and T.J. Aartsma,
Growing-in of optical coherence in the FMO antenna complexes, J.
Phys. Chem. B 106, 9923–9933 (2002),
http://dx.doi.org/10.1021/jp025758e
[16] E. Collini and G.D. Scholes, Coherent intrachain energy
migration in a conjugated polymer at room temperature, Science 323,
369–373 (2009),
http://dx.doi.org/10.1126/science.1164016
[17] J.M. Womick, S.A. Miller, and A.M. Moran, Probing the dynamics
of intraband electronic coherences in cylindrical molecular
aggregates, J. Phys. Chem. A 113, 6587–6598 (2009),
http://dx.doi.org/10.1021/jp811064z
[18] F. Milota, J. Sperling, A. Nemeth, and H.F. Kauffmann,
Two-dimensional electronic photon echoes of a double band
J-aggregate: Quantum oscillatory motion versus exciton relaxation,
Chem. Phys. 357, 45–53 (2009),
http://dx.doi.org/10.1016/j.chemphys.2008.10.015
[19] I. Stiopkin, T. Brixner, M. Yang, and G.R. Fleming,
Heterogeneous exciton dynamics revealed by two-dimensional optical
spectroscopy, J. Phys. Chem. B 110, 20032–20037 (2006),
http://dx.doi.org/10.1021/jp062882f
[20] P.F. Tian, D. Keusters, Y. Suzaki, and W.S. Warren, Femtosecond
phase-coherent two-dimensional spectroscopy, Science 300,
1553–1555 (2003),
http://dx.doi.org/10.1126/science.1083433
[21] T. Brixner, T. Mančal, I.V. Stiopkin, and G.R. Fleming,
Phase-stabilized two-dimensional electronic spectroscopy, J. Chem.
Phys. 121, 4221–4236 (2004),
http://dx.doi.org/10.1063/1.1776112
[22] S. Mukamel, Multidimensional gemtosecond correlation
spectroscopies of electronic and vibrational excitations, Annu. Rev.
Phys. Chem. 51, 691–729 (2000),
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
[23] D.M. Jonas, Two-dimensional femtosecond spectroscopy, Annu.
Rev. Phys. Chem. 54, 425–463 (2003),
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
[24] M. Cho, Coherent two-dimensional optical spectroscopy, Chem.
Rev. 108, 1331–1418 (2008),
http://dx.doi.org/10.1021/cr078377b
[25] B. Brüggemann, P. Kjellberg, and T. Pullerits, Nonperturbative
calculation of 2d spectra in heterogeneous systems: Exciton
relaxation in the fmo complex, Chem. Phys. Lett. 444,
192–196 (2007),
http://dx.doi.org/10.1016/j.cplett.2007.07.002
[26] D. Abramavicius, D.V. Voronine, and S. Mukamel, Unraveling
coherent dynamics and energy dissipation in photosynthetic complexes
by 2D spectroscopy, Biophys. J. 94, 3613–3619 (2008),
http://dx.doi.org/10.1529/biophysj.107.123455
[27] D. Abramavicius, B. Palmieri, D.V. Voronine, F. Šanda, and S.
Mukamel, Coherent multidimensional optical spectroscopy of excitons
in molecular aggregates; Quasiparticle versus supermolecule
perspectives, Chem. Rev. 109, 2350–2408 (2009),
http://dx.doi.org/10.1021/cr800268n
[28] T. Brixner, I.V. Stiopkin, and G.R. Fleming, Tunable
two-dimensional femtosecond spectroscopy, Opt. Lett. 29,
884–886 (2004),
http://dx.doi.org/10.1364/OL.29.000884
[29] S. Mukamel, Principles of Nonlinear Optical Spectroscopy
(Oxford University Press, New York, 1995),
http://www.amazon.co.uk/Principles-Nonlinear-Optical-Spectroscopy-Sciences/dp/0195092783/
[30] D. Kohen, C.C. Marston, and D.J. Tannor, Phase space approach
to theories of quantum dissipation, J. Chem. Phys. 107,
5236–5253 (1997),
http://dx.doi.org/10.1063/1.474887
[31] M. Khalil, N. Demirdöven, and A. Tokmakoff, Coherent 2D IR
spectroscopy: Molecular structure and dynamics in solution, J. Phys.
Chem. A 107, 5258–5279 (2003),
http://dx.doi.org/10.1021/jp0219247
[32] D. Abramavicius, L. Valkunas, and S. Mukamel, Transport and
correlated fluctuations in the nonlinear optical response of
excitons, Europhys. Lett. 80, 17005 (2007),
http://dx.doi.org/10.1209/0295-5075/80/17005
[33] M. Yang and G.R. Fleming, Influence of phonons on exciton
transfer dynamics: comparison of the Redfield, Förster, and modified
Redfield equations, Chem. Phys. 282, 163–180 (2002),
http://dx.doi.org/10.1016/S0301-0104%2802%2900604-3
[34] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic
Excitons (World Scientific, Singapore, 2000),
http://dx.doi.org/10.1142/9789812813664
[35] A. Davydov, Theory of Molecular Excitons (McGraw–Hill,
New York, 1962)
[36] R.E. Blankenship, Molecular Mechanisms of Photosynthesis
(Blackwell Science, 2002),
http://dx.doi.org/10.1002/9780470758472
[37] E.E. Jelley, Spectral absorption and fluorescence of dyes in
the molecular state, Nature 138, 1009 (1936),
http://dx.doi.org/10.1038/1381009a0
[38] G. Scheibe, Über die Veränderlichkeit der Absorptionsspektren
in Lösungen und die Nebenvalenzen als ihre Ursache, Angew. Chem. 49,
563 (1936),
http://dx.doi.org/10.1002/ange.19370501103
[39] J-Aggregates, ed. T. Kobayashi (World Scientific,
Singapore, 1996),
http://www.amazon.co.uk/J-Aggregates-T-Kobayashi/dp/981022737X/
[40] E.W. Knapp, Lineshapes of molecular aggregates, exchange
narrowing and intersite correlation, Chem. Phys. 85, 73–82
(1984),
http://dx.doi.org/10.1016/0301-0104%2884%2985174-5
[41] V.A. Malyshev and F. Domínguez-Adame, Motional narrowing effect
in one-dimensional Frenkel chains with configurational disorder,
Chem. Phys. Lett. 313, 255–260 (1999),
http://dx.doi.org/10.1016/S0009-2614%2899%2901025-8
[42] H. Fidder, J. Knoester, and D.A. Wiersma, Optical properties of
disordered molecular aggregates: A numerical study, J. Chem. Phys. 95,
7880–7890 (1991),
http://dx.doi.org/10.1063/1.461317
[43] H. Fidder, Absorption and emission studies on pure and mixed
J-aggregates of pseudoisocyanine, Chem. Phys. 341, 158–168
(2007),
http://dx.doi.org/10.1016/j.chemphys.2007.06.016
[44] R.E. Fenna and B.W. Matthews, Chlorophyll arrangement in a
bacteriochlorophyll protein from Chlorobium limicola, Nature 258,
573–577 (1975),
http://dx.doi.org/10.1038/258573a0
[45] E.L. Read, G.S. Schlau-Cohen, G.S. Engel, J. Wen, R.E.
Blankenship, and G.R. Fleming, Visualization of excitonic structure
in the Fenna-Matthews-Olson photosynthetic complex by
polarization-dependent twodimensional electronic spectroscopy,
Biophys. J. 95, 847–856 (2008),
http://dx.doi.org/10.1529/biophysj.107.128199
[46] J. Olsina and T. Mančal, Electronic coherence dephasing in
excitonic molecular complexes: Role of Markov and secular
approximations, J. Mol. Model. (2010) [submitted]
[47] A. Ishizaki and G.R. Fleming, Theoretical examination of
quantum coherence in a photosynthetic system at physiological
temperature, Proc. Natl. Acad. Sci. USA 106, 17255–17260
(2009),
http://dx.doi.org/10.1073/pnas.0908989106
[48] A. Ishizaki and G.R. Fleming, Unified treatment of quantum
coherent and incoherent hopping dynamics in electronic energy
transfer: Reduced hierarchy equation approach, J. Chem. Phys. 130,
234111 (2009),
http://dx.doi.org/10.1063/1.3155372
[49] A. Camara-Artigas, R.E. Blankenship, and J.P. Allen, The
structure of the FMO protein from Chlorobium tepidum at 2.2 Å
resolution, Photosynth. Res. 75, 49 (2003),
http://dx.doi.org/10.1023/A:1022406703110
[50] D. Abramavicius, B. Palmieri, and S. Mukamel, Extracting single
and two-exciton couplings in photosynthetic complexes by coherent
two-dimensional electronic spectra, Chem. Phys. 357, 79–84
(2009),
http://dx.doi.org/10.1016/j.chemphys.2008.10.010