[PDF]    http://dx.doi.org/10.3952/lithjphys.50305

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 267–303 (2010)

Review

TWO-DIMENSIONAL OPTICAL SPECTROSCOPY OF MOLECULAR AGGREGATES
V. Butkusa, D. Abramaviciusa,b, A. Gelzinisa, and L. Valkunasa,c
aDepartment of Theoretical Physics, Faculty of Physics of Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vytautas.butkus@ff.vu.lt
bState Key Laboratory of Supramolecular Complexes, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
cCenter for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania

Received 10 September 2010; accepted 16 September 2010

An overview of the theoretical background for the novel spectroscopic tool – two-dimensional (2D) optical spectroscopy – is presented. Principles of nonlinear polarization induction, signal generation, and detection are described. Concepts of heterodyned four-wave mixing experimental technique and 2D spectra construction are detailed and the scheme of third-order polarization calculation is consistently introduced. The system response function theory is formulated for a general multi-level quantum system considering the system-field interaction perturbatively. Equations of motion for the system density operator relevant to the third-order response are presented. Basic quantum systems of a two-level atom, two-level molecule, and a three-level system are considered and analytic expressions of the third-order signal are derived at certain limits. Molecular complexes are described using the Frenkel exciton approach. 2D spectra of the excitonically-coupled dimers of two-level and three-level chromophores are presented. Possibilities of extraction of separate spectral elements as well as performing quantum control by the two-colour 2D spectroscopy for the dimer of excitonically-coupled two-level systems are demonstrated. Effects of motional narrowing of one-dimensional J-aggregates of pseudoisocyanine and construction of the J-band as well as highly-efficient excitonic energy transfer in photosynthetic Fenna–Matthews–Olson complex are illustrated by simulated time-resolved 2D spectra.
Keywords: optical two-dimensional spectroscopy, four-wave mixing, molecular excitons
PACS: 78.47.nj, 78.47.Fg, 71.35.Aa


DVIMATĖ OPTINĖ MOLEKULINIŲ AGREGATŲ SPEKTROSKOPIJA
V. Butkusa, D. Abramavičiusa,b, A. Gelžinisa, L. Valkūnasa,c
aVilniaus universiteto Fizikos fakulteto Teorinės fizikos katedra, Vilnius, Lietuva
bJilin universiteto Molekulinių darinių laboratorija, Čangčunas, Kinijos Liaudies Respublika
cFizikos institutas, Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Dvimatė elektroninė spektroskopija yra vienas naujausių bei pažangiausių daugiaimpulsinės spektroskopijos metodų, šiuo metu intensyviai naudojamas analizuojant vyksmus itin sudėtinguose fotosintetiniuose dariniuose. Šis metodas leidžia geriau suprasti koherentiškumo gesimo ir užpildų pernašos vyksmus, stebimus sudėtingose daugiachromoforinėse eksitoninio ryšio sistemose.
Pagrindiniai šio spektroskopijos metodo privalumai yra puiki laikinė skiriamoji geba (stebimi femtosekundžių trukmės vyksmai) bei koherentinės ir nekoherentinės prigimties sąveikaujančių sistemų evoliucijų atskyrimas. Dėl pastarosios savybės galima stebėti sužadinimo pernašą sistemos viduje, itin efektyvų energijos perdavimą lemiančias koherentiškumo osciliacijas bei dar geriau išskirti nevienalytiškai išplitusias spektro linijas.
Iš (bakterio)chlorofilų sudarytuose bakterijų ir augalų fotosintezės reakciniuose centruose, šviesos energijos surinkimo bei perdavimo kompleksuose chromoforų skaičius yra didelis, tad iki šiol naudota supaprastinta netiesinio atsako teorija, išvystyta daug mažesnėms struktūroms, pavyzdžiui, dimui, aprašyti, nėra tiesiogiai taikytina. Tokių kompleksų modeliavimas tampa sudėtingas, todėl taikomos ˛ivairios aproksimacijos, naudojamas eksitoninis vaizdavimas.
Šiame darbe yra pristatoma bendra keturių bangų maišymo eksperimento modeliavimo schema bei išvestos trečios eilės atsako funkcijos išraiškos daugelio lygmenų eksitoninei sistemai, trumpai aptartos alternatyvios teorijos, paremtos neperturbaciniu kinetinės tankio matricos lygties sprendimu. Pateikiami sumodeliuoti elementarių kvantinių sistemų dvimačiai spektrai bei analizinės trečios eilės atsako išraiškos. Atskirai aptariami dimerų spektrai, kai juos sudarančios chromoforos aproksimuojamos kaip dviejų arba trijų lygmenų sistemos. Dviejų lygmenų chromoforų dimero atveju demonstruojamos galimybės pritaikyti dvispalvę dvimatę spektroskopiją siekiant išskirti spektrinius elementus bei indukuoti skirtingus fizikinius vyksmus sistemoje. Tokiųmatavimų rezultatai sudarytų prielaidas įvertinti makroskopinius nagrinėjamos sitemos parametrus – rezonansinę sąveiką, dipolinius momentus. Dvimatės spektroskopijos pritaikymui molekuliniams agregatams pateikiami vienmačio tiesinio J agregato bei fotosintetinio Fenna–Matthews–Olson (FMO) komplekso sugerties ir dvimačiai spektrai. Iš sumodeliuotų FMO komplekso spektrų galima daryti išvadas apie sužadinimo perdavimo tarp chromoforų scenarijus sistemoje bei koherentiškumo fliuktuacijas, kurios, manoma, lemia itin efektyvų energijos perdavimą sistemoje.


References / Nuorodos


[1] D.P. Weitekamp, K.Duppen, and D.A. Wiersma, Delayed four-wave-mixing spectroscopy in molecular crystals: A nonperturbative approach, Phys. Rev. A 27, 3089–3111 (1983),
http://dx.doi.org/10.1103/PhysRevA.27.3089
[2] M. Cho, N.F. Scherer, G.R. Fleming, and S. Mukamel, Photon echoes and related four-wave-mixing spectroscopies using phase-locked pulses, J. Chem. Phys. 96, 5618–5629 (1992),
http://dx.doi.org/10.1063/1.462686
[3] M. Cho, H.M. Vaswani, T. Brixner, J. Stenger, and G.R. Fleming, Exciton analysis in 2d electronic spectroscopy, J. Phys. Chem. B 109, 10542–10556 (2005),
http://dx.doi.org/10.1021/jp050788d
[4] D. Zigmantas, E.L. Read, T. Mančal, T. Brixner, A.T. Gardiner, R.J. Cogdell, and G.R. Fleming, Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex, Proc. Natl. Acad. Sci. USA 103, 12672–12677 (2006),
http://dx.doi.org/10.1073/pnas.0602961103
[5] V.I. Prokhorenko, A. Halpin, and R.J.D. Miller, Coherently-controlled two-dimensional photon echo electronic spectroscopy, Opt. Express 17, 9764–9779 (2009),
http://dx.doi.org/10.1364/OE.17.009764
[6] B.S. Prall, D.Y. Parkinson, G.R. Fleming, M. Yang, and N. Ishikawa, Two-dimensional optical spectroscopy: Two-color photon echoes of electronically coupled phthalocyanine dimers, J. Chem. Phys. 120, 2537–2540 (2004),
http://dx.doi.org/10.1063/1.1644794
[7] M. Cho and G.R. Fleming, The integrated photon echo and solvation dynamics. II. Peak shifts and two-dimensional photon echo of a coupled chromophore system, J. Chem. Phys. 123, 114506 (2005),
http://dx.doi.org/10.1063/1.1955444
[8] P. Kjellberg, B. Brüggemann, and T. Pullerits, Two-dimensional electronic spectroscopy of an excitonically coupled dimer, Phys. Rev. B 74, 024303 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.024303
[9] D.V. Voronine, D. Abramavicius, and S. Mukamel, Coherent control of cross-peaks in chirality-induced two-dimensional optical signals of excitons, J. Chem. Phys. 125, 224504 (2006),
http://dx.doi.org/10.1063/1.2397686
[10] A.V. Pisliakov, T. Mančal, and G.R. Fleming, Two-dimensional optical three-pulse photon echo spectroscopy. II. signatures of coherent electronic motion and exciton population transfer in dimer two-dimensional spectra, J. Chem. Phys. 124, 234505 (2006),
http://dx.doi.org/10.1063/1.2200705
[11] Y.-C. Cheng and G.R. Fleming, Coherence quantum beats in two-dimensional electronic spectroscopy, J. Phys. Chem. A 112, 4254–4260 (2008),
http://dx.doi.org/10.1021/jp7107889
[12] D. Abramavicius, V. Butkus, J. Bujokas, and L. Valkunas, Manipulation of two-dimensional spectra of excitonically coupled molecules by narrow-bandwidth laser pulses, Chem. Phys. 372, 22–32 (2010),
http://dx.doi.org/10.1016/j.chemphys.2010.04.015
[13] T. Brixner, J. Stenger, H.M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, Two-dimensional spectroscopy of electronic couplings in photosynthesis, Nature 434, 625–628 (2005),
http://dx.doi.org/10.1038/nature03429
[14] G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mančal, Y.C. Cheng, R.E. Blankenship, and G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446, 782 (2007),
http://dx.doi.org/10.1038/nature05678
[15] V.I. Prokhorenko, A.R. Holzwarth, F.R. Nowak, and T.J. Aartsma, Growing-in of optical coherence in the FMO antenna complexes, J. Phys. Chem. B 106, 9923–9933 (2002),
http://dx.doi.org/10.1021/jp025758e
[16] E. Collini and G.D. Scholes, Coherent intrachain energy migration in a conjugated polymer at room temperature, Science 323, 369–373 (2009),
http://dx.doi.org/10.1126/science.1164016
[17] J.M. Womick, S.A. Miller, and A.M. Moran, Probing the dynamics of intraband electronic coherences in cylindrical molecular aggregates, J. Phys. Chem. A 113, 6587–6598 (2009),
http://dx.doi.org/10.1021/jp811064z
[18] F. Milota, J. Sperling, A. Nemeth, and H.F. Kauffmann, Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation, Chem. Phys. 357, 45–53 (2009),
http://dx.doi.org/10.1016/j.chemphys.2008.10.015
[19] I. Stiopkin, T. Brixner, M. Yang, and G.R. Fleming, Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy, J. Phys. Chem. B 110, 20032–20037 (2006),
http://dx.doi.org/10.1021/jp062882f
[20] P.F. Tian, D. Keusters, Y. Suzaki, and W.S. Warren, Femtosecond phase-coherent two-dimensional spectroscopy, Science 300, 1553–1555 (2003),
http://dx.doi.org/10.1126/science.1083433
[21] T. Brixner, T. Mančal, I.V. Stiopkin, and G.R. Fleming, Phase-stabilized two-dimensional electronic spectroscopy, J. Chem. Phys. 121, 4221–4236 (2004),
http://dx.doi.org/10.1063/1.1776112
[22] S. Mukamel, Multidimensional gemtosecond correlation spectroscopies of electronic and vibrational excitations, Annu. Rev. Phys. Chem. 51, 691–729 (2000),
http://dx.doi.org/10.1146/annurev.physchem.51.1.691
[23] D.M. Jonas, Two-dimensional femtosecond spectroscopy, Annu. Rev. Phys. Chem. 54, 425–463 (2003),
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
[24] M. Cho, Coherent two-dimensional optical spectroscopy, Chem. Rev. 108, 1331–1418 (2008),
http://dx.doi.org/10.1021/cr078377b
[25] B. Brüggemann, P. Kjellberg, and T. Pullerits, Nonperturbative calculation of 2d spectra in heterogeneous systems: Exciton relaxation in the fmo complex, Chem. Phys. Lett. 444, 192–196 (2007),
http://dx.doi.org/10.1016/j.cplett.2007.07.002
[26] D. Abramavicius, D.V. Voronine, and S. Mukamel, Unraveling coherent dynamics and energy dissipation in photosynthetic complexes by 2D spectroscopy, Biophys. J. 94, 3613–3619 (2008),
http://dx.doi.org/10.1529/biophysj.107.123455
[27] D. Abramavicius, B. Palmieri, D.V. Voronine, F. Šanda, and S. Mukamel, Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; Quasiparticle versus supermolecule perspectives, Chem. Rev. 109, 2350–2408 (2009),
http://dx.doi.org/10.1021/cr800268n
[28] T. Brixner, I.V. Stiopkin, and G.R. Fleming, Tunable two-dimensional femtosecond spectroscopy, Opt. Lett. 29, 884–886 (2004),
http://dx.doi.org/10.1364/OL.29.000884
[29] S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995),
http://www.amazon.co.uk/Principles-Nonlinear-Optical-Spectroscopy-Sciences/dp/0195092783/
[30] D. Kohen, C.C. Marston, and D.J. Tannor, Phase space approach to theories of quantum dissipation, J. Chem. Phys. 107, 5236–5253 (1997),
http://dx.doi.org/10.1063/1.474887
[31] M. Khalil, N. Demirdöven, and A. Tokmakoff, Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution, J. Phys. Chem. A 107, 5258–5279 (2003),
http://dx.doi.org/10.1021/jp0219247
[32] D. Abramavicius, L. Valkunas, and S. Mukamel, Transport and correlated fluctuations in the nonlinear optical response of excitons, Europhys. Lett. 80, 17005 (2007),
http://dx.doi.org/10.1209/0295-5075/80/17005
[33] M. Yang and G.R. Fleming, Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations, Chem. Phys. 282, 163–180 (2002),
http://dx.doi.org/10.1016/S0301-0104%2802%2900604-3
[34] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific, Singapore, 2000),
http://dx.doi.org/10.1142/9789812813664
[35] A. Davydov, Theory of Molecular Excitons (McGraw–Hill, New York, 1962)
[36] R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002),
http://dx.doi.org/10.1002/9780470758472
[37] E.E. Jelley, Spectral absorption and fluorescence of dyes in the molecular state, Nature 138, 1009 (1936),
http://dx.doi.org/10.1038/1381009a0
[38] G. Scheibe, Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache, Angew. Chem. 49, 563 (1936),
http://dx.doi.org/10.1002/ange.19370501103
[39] J-Aggregates, ed. T. Kobayashi (World Scientific, Singapore, 1996),
http://www.amazon.co.uk/J-Aggregates-T-Kobayashi/dp/981022737X/
[40] E.W. Knapp, Lineshapes of molecular aggregates, exchange narrowing and intersite correlation, Chem. Phys. 85, 73–82 (1984),
http://dx.doi.org/10.1016/0301-0104%2884%2985174-5
[41] V.A. Malyshev and F. Domínguez-Adame, Motional narrowing effect in one-dimensional Frenkel chains with configurational disorder, Chem. Phys. Lett. 313, 255–260 (1999),
http://dx.doi.org/10.1016/S0009-2614%2899%2901025-8
[42] H. Fidder, J. Knoester, and D.A. Wiersma, Optical properties of disordered molecular aggregates: A numerical study, J. Chem. Phys. 95, 7880–7890 (1991),
http://dx.doi.org/10.1063/1.461317
[43] H. Fidder, Absorption and emission studies on pure and mixed J-aggregates of pseudoisocyanine, Chem. Phys. 341, 158–168 (2007),
http://dx.doi.org/10.1016/j.chemphys.2007.06.016
[44] R.E. Fenna and B.W. Matthews, Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola, Nature 258, 573–577 (1975),
http://dx.doi.org/10.1038/258573a0
[45] E.L. Read, G.S. Schlau-Cohen, G.S. Engel, J. Wen, R.E. Blankenship, and G.R. Fleming, Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent twodimensional electronic spectroscopy, Biophys. J. 95, 847–856 (2008),
http://dx.doi.org/10.1529/biophysj.107.128199
[46] J. Olsina and T. Mančal, Electronic coherence dephasing in excitonic molecular complexes: Role of Markov and secular approximations, J. Mol. Model. (2010) [submitted]
[47] A. Ishizaki and G.R. Fleming, Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature, Proc. Natl. Acad. Sci. USA 106, 17255–17260 (2009),
http://dx.doi.org/10.1073/pnas.0908989106
[48] A. Ishizaki and G.R. Fleming, Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach, J. Chem. Phys. 130, 234111 (2009),
http://dx.doi.org/10.1063/1.3155372
[49] A. Camara-Artigas, R.E. Blankenship, and J.P. Allen, The structure of the FMO protein from Chlorobium tepidum at 2.2 Å resolution, Photosynth. Res. 75, 49 (2003),
http://dx.doi.org/10.1023/A:1022406703110
[50] D. Abramavicius, B. Palmieri, and S. Mukamel, Extracting single and two-exciton couplings in photosynthetic complexes by coherent two-dimensional electronic spectra, Chem. Phys. 357, 79–84 (2009),
http://dx.doi.org/10.1016/j.chemphys.2008.10.010