[PDF]    http://dx.doi.org/10.3952/lithjphys.50308

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 351–362 (2010)


APPLICATION OF ATMOSPHERE SENSING BY INFRARED LIDARS FOR ENVIRONMENTAL PROTECTION AND INDUSTRY NEEDS
V. Švedasa, V. Vaičikauskasa, and M. Kaučikasb
aInstitute of Physics, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: svedas@ktl.mii.lt
bEKSPLA Ltd., Savanorių 231, LT–02300 Vilnius, Lithuania

Received 22 March 2010; revised 6 September 2010; accepted 16 September 2010

The paper analyses some equipment and methodological aspects of atmospheric pollution monitoring by infrared lidars. Features of optical parametric oscillators (including our created two-stage system) operating in the spectral ranges of molecular fundamental vibrations are discussed. The environment protection and industry demands for this remote monitoring technology are considered. Despite the progress in the technology and low detection limits achieved, the reliable and fast identification of pollutants is far from perfection. Inner and outer factors worsening the lidar performance, i. e. stability of the transmitted pulse energy, atmospheric turbulence, and irregularity of the pollutant plume near the source, are examined. A lidaric measurement model implying pulse stability was developed and applied to the 8–14 μm and 0.5 mJ per pulse lidar operating in the topographic target mode with the 0.05 m2 telescope and the mercury cadmium telluride detector. It has been found that the laser pulse energy instability (energy dispersion parameter D) essentially worsens the detection limit in shorter ranges (<2 km for D = 1%). Adaptation of lidar technology to the fast varying irregular plumes was tested experimentally. Plume detection events were processed using the probabilistic model, and the probability of false alarm was evaluated.
Keywords: IR lidar, atmospheric pollution monitoring, optical parametric oscillator, modelling
PACS: 42.68.Wt, 42.65.Yj, 92.60.Sz


INFRARAUDONŲJŲ LIDARINIŲ ATMOSFEROS JUTIKLIŲ PRITAIKYMAS APLINKOSAUGOS IR PRAMONĖS POREIKIAMS
V. Švedasa, V. Vaičikauskasa, M. Kaučikasb
aFizikos institutas, Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
bUAB EKSPLA, Vilnius, Lietuva

Aptariami atmosferos taršos stebėsenos infraraudonosios srities lidarais įrangos ir metodologiniai aspektai, o taip pat optinių parametrinių osciliatorių (tame tarpe mūsų dvipakopės konversijos sistemos), veikiančių molekulių fundamentinių virpesių srityje, ypatumai. Nagrinėjami aplinkosaugos ir pramonės poreikiai ir techniniai reikalavimai šiai nuotolinei technologijai. Nežiūrint pažangos šioje srityje ir pasiektų žemų detektavimo slenksčių, dar nęimanoma vienareikšmiškai ir greitai identifikuosi patekusius teršalus. Tiriami detektavimo charakteristikas bloginantys vidiniai ir išoriniai veiksniai, tokie kaip siunčiamo impulso energijos nestabilumas, atmosferos turbulentiškumas ir vėjo gūsių keliamas teršalo pliūpsnių netaisyklingas pasklidimas. Pateikiamas lidarinio matavimo modelis, atsižvelgiantis į spinduliuotės impulse nestabilumą. Modelis pritaikytas 8–14 μm srities ir 0,5 mJ impulso energijos lidarui, matuojančiam topografinio taikinio metodu 0,05 m2 teleskopu ir gyvsidabrio kadmio telūrido fotodetektoriumi. Nustatyta, kad lazerio impulse nestabilumas, charakterizuojamas energijos dispersija D, iš esmės pablogina detektavimo slenksčio vertes dirbant mažesniais atstumais (<2 km, kai D = 1 %). Eksperimentiškai išbandyta lidaro adaptacija detektuojant greitai kintančius ir netaisyklingus teršalo simulianto pliūpsnius. Sklindančių pliūpsnių susikirtimo su lidaro spinduliu atvejams pritaikytas tikimybinis modelis, leidžiantis įvertinti klaidingo aliarmo tikimybę.


References / Nuorodos


[1] R.A. Baumgartner and R.L. Byer, Continuously tunable IR lidar with applications to remote measurements of SO2 and CH4, Appl. Opt. 17, 3555–3561 (1978),
http://dx.doi.org/10.1364/AO.17.003555
[2] R.M. Measures, Laser Remote Sensing. Fundamentals and Applications (Krieger, Malabar, Florida, 1992)
[3] A. Clericetti, B. Calpini, E. Durieux, H. van den Bergh, and M.J. Rossi, Pump-and-probe lidar for in-situ probing of atmospheric chemistry, Proc. SPIE 1714, 291–302 (1992),
http://dx.doi.org/10.1117/12.138539
[4] D.R. Pendleton, Air toxics: Sources and monitoring in Texas, Environ. Health Perspect. Suppl. 103(S6), 223–228 (1995),
http://dx.doi.org/10.2307/3432377
[5] R.J. Hogan, A.J. Illingworth, E.J. O’connor, and J.P.V.P. Baptista, Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar, Quart. J. Roy. Meteorolog. Soc. 129, 2117–2134 (2003),
http://dx.doi.org/10.1256/qj.01.209
[6] A. Chambers, Optical Measurement Technology for Fugitive Emissions from Upstream Oil and Gas Facilities, Alberta Research Council Report, Project No. CEM - P004.03 (2004),
http://www.ptac.org/rdd/details.php?projectid=215
[7] D.G. Murdock, S.V. Stearns, R.T. Lines, D. Lenz, M.D. Brown, and C.R. Philbrick, Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system, J. Appl. Remote Sensing 2, 023518 (2008),
http://dx.doi.org/10.1117/1.2937078
[8] M.B. Frish, M.A. White, and M.G. Allen, Handheld laser-based sensor for remote detection of toxic and hazardous gases, Proc. SPIE 4199, 19–28 (2001),
http://dx.doi.org/10.1117/12.417375
[9] R. Vanderbeek and K. Gurton, Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar, Proc. SPIE 5268, 184–193 (2004),
http://dx.doi.org/10.1117/12.519106
[10] Laser Based Stand-Off Detection of Biological Agents, NATO RTO, Final Report of Task Group SET-098/RTG-55 (2010),
http://www.rta.nato.int/pubs/rdp.asp?RDP=RTO-TR-SET-098
[11] V. Vaičikauskas, M. Kaučikas, and V. Švedas, Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser, Rev. Sci. Instrum. 78, 023106 (2007),
http://dx.doi.org/10.1063/1.2668940
[12] S. Amoruso, A. Amodeo, M. Armenante, A. Bosellid, L. Mona, M. Pandolfi, G. Pappalardo, R. Velottad, N. Spinelli, and X.Wang, Development of a tunable IR lidar system, Optics Lasers Eng. 37, 521–532 (2002),
http://dx.doi.org/10.1016/S0143-8166%2801%2900115-4
[13] M. Taslakov, V. Simeonov, and H. van den Bergh, Open path atmospheric spectroscopy using room temperature operated pulsed quantum cascade laser, Spectrochim. Acta A 63, 1002–1008 (2006),
http://dx.doi.org/10.1016/j.saa.2005.11.007
[14] W.W. Harper, J.D. Strasburg, P.M. Aker, and J.F. Schultz, Remote Chemical Sensing Using Quantum Cascade Lasers, Pacific Northwest National Laboratory Report PNNL-14525 (Richland, Washington 99352, USA, 2004),
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-14525.pdf
[15] K. Miyamoto and H. Ito, Wavelength-agile mid-infrared (5–10 μm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator, Opt. Lett. 32, 274–276 (2007),
http://dx.doi.org/10.1364/OL.32.000274
[16] M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source, Opt. Lett. 31, 1878–1880 (2006),
http://dx.doi.org/10.1364/OL.31.001878
[17] S. Haidar, K. Miyamoto, and H. Ito, Generation of tunable mid-IR (5.5–9.3 μm) from a 2 μm pumped ZnGeP2 optical parametric oscillator, Opt. Commun. 241, 173–178 (2004),
http://dx.doi.org/10.1016/j.optcom.2004.06.065
[18] K.L. Vodopyanov and P.G. Schunemann, Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-μJ pump threshold, Opt. Lett. 28, 441–443 (2003),
http://dx.doi.org/10.1364/OL.28.000441
[19] T. Schroeder, Two-stage nanosecond OPO based on LiNbO3 and AgGaSe2 tunable from 3 μm to 6 μm, in: Lasers and Electro-Optics, 2001, CLEO’01, Technical Digest, Summaries of papers presented at the conference (IEEE, 2002) pp. 450–451
[20] E. Cheung, S. Palese, H. Injeyan, C. Hoefer, R. Hilyard, H. Komine, J. Gish, and W. Bosenberg, High power optical parametric oscillator source, in: Proceedings of IEEE Aerospace Conference, Vol. 3 (2000) pp. 55–59,
http://dx.doi.org/10.1109/AERO.2000.879831
[21] H. Komine, J.M. Fukumoto, W.H. Long, and E.A. Stappaerts, Noncritically phase matched mid- infrared generation in AgGaSe2, IEEE J. Sel. Topics Quant. Electron. 1, 44–49 (1995),
http://dx.doi.org/10.1109/2944.468373
[22] T. Chuang and R. Burnham, Multiple mid-infrared generation using PPLN and AgGaSe2 OPOs, in: Lasers and Electro-Optics, 1998, CLEO 98, Technical Digest, Summaries of papers presented at the Conference (IEEE, 2002) pp. 541–542
[23] Y. Isyanova, A. Dergachev, D.Welford, and P.F. Moulton, Multi-wavelength, 1.5–10 μm tunable, tandem OPO, in: Advanced Solid State Lasers, eds. M. Fejer, H. Injeyan, and U. Keller, Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper WB4,
http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1999-WB4
[24] S. Chandra, T. Allik, G. Catella, R. Utano, and J. Hutchinson, Continuously tunable, 6–14 μm silver-gallium selenide optical parametric oscillator pumped at 1.57 μm, Appl. Phys. Lett. 71, 584–586 (1997),
http://dx.doi.org/10.1063/1.119920
[25] Y. Ehrlich, S. Pearl, G. Peleg, and S. Fastig, High brightness tunable OPO source for 8–12 μm dial, in: 22nd International Laser Radar Conference, eds. G. Pappalardo and A. Amodeo (ESA, Paris, 2004) p. 191,
http://articles.adsabs.harvard.edu//full/2004ESASP.561..191E/0000191.000.html
[26] S. Fastig, Y. Ehrlich, S. Pearl, E. Naor, Y. Kraus, T. Inbar, and D. Katz, Multi-spectral lidar system – design, build and test, in: 23rd International Laser Radar Conference, eds. C. Nagasawa and N. Sugimoto (2006) pp. 20–27
[27] J.M. Fukumoto, W. Katata, E.J. Griffin, C.R. Swim, and J.A. Fox, All solid-state, 8–12 μm continuously tunable DIAL laser transmitter with pattern-controllable, rapid wavelength switching, in: Advanced Solid-State Photonics, ed. J. Zayhowski (OSA, 2003) paper 131,
http://www.opticsinfobase.org/abstract.cfm?id=141440#abstract
[28] P.B. Phua, K.S. Lai, R.F. Wu, and T.C. Chong, High-effciency mid-infrared ZnGeP2 optical parametric oscillator in a multimode-pumped tandem optical parametric oscillator, Appl. Optics 38, 563–565 (1999),
http://dx.doi.org/10.1364/AO.38.000563
[29] G. Rustad, S. Nicolas, O. Nordseth, and G. Arisholm, High pulse energy mid-infrared laser source, Proc. SPIE 5989, 598904 (2005),
http://dx.doi.org/10.1117/12.629870
[30] R.E. Warren and R.G. Vanderbeek, Detection and classification of atmospheric aerosols using multi-wavelength CO2 lidar, Proc. SPIE 6554, 65540V (2007),
http://dx.doi.org/10.1117/12.722414
[31] R.E. Warren and R.G. Vanderbeek, Parallel estimation of path-integrated concentration and vapor absorptivity using topographic backscatter lidar, Proc. SPIE 5887, 58870Q (2005),
http://dx.doi.org/10.1117/12.620454
[32] Testing and Evaluation of Standoff Chemical Agent Detectors, National Research Council, Committee on Testing and Evaluation of Standoff Chemical Agent Detectors (The National Academies Press, Washington, USA, 2003),
http://www.amazon.com/Testing-Evaluation-Standoff-Chemical-Detectors/dp/0309087406/
[33] T. Iseki, H. Tal, and K. Kimura, A portable remote methane sensor using a tunable diode laser, Meas. Sci. Technol. 11, 594–602 (2000),
http://dx.doi.org/10.1088/0957-0233/11/6/302
[34] List of Extremely Hazardous Substances and Data for Hazards Analysis (Exhibit C), in: Technical Guidance for Hazards Analysis. Emergency Planning for Extremely Hazardous Substances, U.S. Environmental Protection Agency, Federal Emergency Management Agency, U.S. Department of Transportation, December 1987, pp. C2–C11,
http://www.epa.gov/oem/docs/chem/tech.pdf
[35] Atmospheric Transmission, Emission and Scattering, ed. T.G. Kyle (Pergamon Press, Oxford, New York, Seoul, Tokyo, 1991),
http://www.amazon.com/Atmospheric-Transmission-Emission-Scattering-Thomas/dp/0080402879/
[36] G.R. Osche, Optical Detection Theory for Laser Applications (Wiley, New York, 2002),
http://www.amazon.com/Optical-Detection-Theory-Applications-Applied/dp/0471224111/
[37] R. Mezheris, Laser Remote Sounding (Mir, Moscow, 1987) [in Russian]
[38] P. Weibring, C. Abrahamsson, M. Sjöholm, J.N. Smith, H. Edner, and S. Svanberg, Multi-component chemical analysis of gas mixtures using a continuously tuneable lidar system, Appl. Phys. B 79, 525–530 (2004),
http://dx.doi.org/10.1007/s00340-004-1565-8
[39] Open Path Technologies: Measurement at a Distance. Lidar,
http://clu-in.org/programs/21m2/openpath/lidar/#chemical
[40] P. Weibring and S. Svanberg, Versatile mobile lidar system for enviromental monitoring, Appl. Opt. 42, 3583–3594 (2003),
http://dx.doi.org/10.1364/AO.42.003583
[41] S. O’Connor, H. Walmsley, and H. Pasley, Differential absorption LIDAR (DIAL) measurements of the mechanisms of volatile organic compound loss from external floating roofed tanks, Proc. SPIE 3493, 255–266 (1998),
http://dx.doi.org/10.1117/12.332661
[42] A. Chambers and M. Strosher, Refinery Demonstration of Optical Technologies for Measurement of Fugitive Emissions and for Leak Detection (Alberta Research Council Inc., 2006),
http://www.clu-in.org/programs/21m2/lit_show.cfm?id=5677
[43] A.R. Geiger and S.N. Prasad, Mid-infrared DIAL lidar for petroleum exploration and pipeline monitoring, Proc. SPIE 2374, 240–248 (1995),
http://dx.doi.org/10.1117/12.205014
[44] P.G. Philippov, Yu.A. Bakhirkin, V.N. Moiseev, R.N. Pichtelev, S.N. Gurkin, and I.A. Zhutchenko, DIAL infrared lidar for monitoring of main pipelines and gas industry objects, Proc. SPIE 3504, 119-127 (1998),
http://dx.doi.org/10.1117/12.319589
[45] B. Belanger, A. Fougeres, M. Talbot, and J. Cormier, Industrial site particulate pollution monitoring with an eye-safe and scanning industrial fiber lidar, Proc. SPIE 4199, 67–76 (2000),
http://dx.doi.org/10.1117/12.417362
[46] J. Heiser and A. Sedlacek, Using LIDAR to measure perflurocarbon tracers for the verification and monitoring of cap and cover systems, Water Air Soil Pollut. 170, 345–357 (2006),
http://dx.doi.org/10.1007/s11270-005-9007-8
[47] Flight Testing of an Advanced Airborne Natural Gas Leak Detection System, Final Report, ITT Industries Space Systems (Rochester, NY, USA, 2005),
http://www.netl.doe.gov/technologies/oil-gas/publications/td/41877_final.PDF
[48] U.S. DOE, Field testing of remote sensor gas leak detection systems, Rocky Mountain Oilfield Testing Center (RMOTC, Casper, WY, 2004),
http://www.netl.doe.gov/technologies/oil-gas/publications/td/Final%20Report_RMOTC.pdf
[49] A.E. Degtiarev, A.R. Geiger, and R.D. Richmond, Compact mid-infrared DIAL lidar for ground-based and airborne pipeline monitoring, Proc. SPIE 4882, 432–441 (2003),
http://dx.doi.org/10.1117/12.462573