[PDF]
http://dx.doi.org/10.3952/lithjphys.50308
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 351–362 (2010)
APPLICATION OF ATMOSPHERE
SENSING BY INFRARED LIDARS FOR ENVIRONMENTAL PROTECTION AND
INDUSTRY NEEDS
V. Švedasa, V. Vaičikauskasa, and M.
Kaučikasb
aInstitute of Physics, Center for Physical Sciences
and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: svedas@ktl.mii.lt
bEKSPLA Ltd., Savanorių 231, LT–02300
Vilnius, Lithuania
Received 22 March 2010; revised 6
September 2010; accepted 16 September 2010
The paper analyses some equipment
and methodological aspects of atmospheric pollution monitoring by
infrared lidars. Features of optical parametric oscillators
(including our created two-stage system) operating in the spectral
ranges of molecular fundamental vibrations are discussed. The
environment protection and industry demands for this remote
monitoring technology are considered. Despite the progress in the
technology and low detection limits achieved, the reliable and
fast identification of pollutants is far from perfection. Inner
and outer factors worsening the lidar performance, i. e. stability
of the transmitted pulse energy, atmospheric turbulence, and
irregularity of the pollutant plume near the source, are examined.
A lidaric measurement model implying pulse stability was developed
and applied to the 8–14 μm and 0.5 mJ per pulse lidar
operating in the topographic target mode with the 0.05 m2
telescope and the mercury cadmium telluride detector. It has been
found that the laser pulse energy instability (energy dispersion
parameter D) essentially worsens the detection limit in shorter
ranges (<2 km for D = 1%). Adaptation of lidar
technology to the fast varying irregular plumes was tested
experimentally. Plume detection events were processed using the
probabilistic model, and the probability of false alarm was
evaluated.
Keywords: IR lidar, atmospheric
pollution monitoring, optical parametric oscillator, modelling
PACS: 42.68.Wt, 42.65.Yj, 92.60.Sz
INFRARAUDONŲJŲ LIDARINIŲ
ATMOSFEROS JUTIKLIŲ PRITAIKYMAS APLINKOSAUGOS IR PRAMONĖS
POREIKIAMS
V. Švedasa, V. Vaičikauskasa, M. Kaučikasb
aFizikos institutas, Fizinių ir technologijos mokslų
centras, Vilnius, Lietuva
bUAB EKSPLA, Vilnius, Lietuva
Aptariami atmosferos taršos stebėsenos
infraraudonosios srities lidarais įrangos ir metodologiniai
aspektai, o taip pat optinių parametrinių osciliatorių (tame tarpe
mūsų dvipakopės konversijos sistemos), veikiančių molekulių
fundamentinių virpesių srityje, ypatumai. Nagrinėjami
aplinkosaugos ir pramonės poreikiai ir techniniai reikalavimai
šiai nuotolinei technologijai. Nežiūrint pažangos šioje srityje ir
pasiektų žemų detektavimo slenksčių, dar nęimanoma
vienareikšmiškai ir greitai identifikuosi patekusius teršalus.
Tiriami detektavimo charakteristikas bloginantys vidiniai ir
išoriniai veiksniai, tokie kaip siunčiamo impulso energijos
nestabilumas, atmosferos turbulentiškumas ir vėjo gūsių keliamas
teršalo pliūpsnių netaisyklingas pasklidimas. Pateikiamas
lidarinio matavimo modelis, atsižvelgiantis į spinduliuotės
impulse nestabilumą. Modelis pritaikytas 8–14 μm srities
ir 0,5 mJ impulso energijos lidarui, matuojančiam topografinio
taikinio metodu 0,05 m2 teleskopu ir gyvsidabrio kadmio
telūrido fotodetektoriumi. Nustatyta, kad lazerio impulse
nestabilumas, charakterizuojamas energijos dispersija D, iš esmės
pablogina detektavimo slenksčio vertes dirbant mažesniais
atstumais (<2 km, kai D = 1 %). Eksperimentiškai
išbandyta lidaro adaptacija detektuojant greitai kintančius ir
netaisyklingus teršalo simulianto pliūpsnius. Sklindančių
pliūpsnių susikirtimo su lidaro spinduliu atvejams pritaikytas
tikimybinis modelis, leidžiantis įvertinti klaidingo aliarmo
tikimybę.
References / Nuorodos
[1] R.A. Baumgartner and R.L. Byer, Continuously tunable IR lidar
with applications to remote measurements of SO2 and CH4,
Appl. Opt. 17, 3555–3561 (1978),
http://dx.doi.org/10.1364/AO.17.003555
[2] R.M. Measures, Laser Remote Sensing. Fundamentals and
Applications (Krieger, Malabar, Florida, 1992)
[3] A. Clericetti, B. Calpini, E. Durieux, H. van den Bergh, and
M.J. Rossi, Pump-and-probe lidar for in-situ probing of atmospheric
chemistry, Proc. SPIE 1714, 291–302 (1992),
http://dx.doi.org/10.1117/12.138539
[4] D.R. Pendleton, Air toxics: Sources and monitoring in Texas,
Environ. Health Perspect. Suppl. 103(S6), 223–228 (1995),
http://dx.doi.org/10.2307/3432377
[5] R.J. Hogan, A.J. Illingworth, E.J. O’connor, and J.P.V.P.
Baptista, Characteristics of mixed-phase clouds. II: A climatology
from ground-based lidar, Quart. J. Roy. Meteorolog. Soc. 129,
2117–2134 (2003),
http://dx.doi.org/10.1256/qj.01.209
[6] A. Chambers, Optical Measurement Technology for Fugitive
Emissions from Upstream Oil and Gas Facilities, Alberta
Research Council Report, Project No. CEM - P004.03 (2004),
http://www.ptac.org/rdd/details.php?projectid=215
[7] D.G. Murdock, S.V. Stearns, R.T. Lines, D. Lenz, M.D. Brown, and
C.R. Philbrick, Applications of real-world gas detection: Airborne
Natural Gas Emission Lidar (ANGEL) system, J. Appl. Remote Sensing 2,
023518 (2008),
http://dx.doi.org/10.1117/1.2937078
[8] M.B. Frish, M.A. White, and M.G. Allen, Handheld laser-based
sensor for remote detection of toxic and hazardous gases, Proc. SPIE
4199, 19–28 (2001),
http://dx.doi.org/10.1117/12.417375
[9] R. Vanderbeek and K. Gurton, Backscatter measurements of
aerosolized CB simulants with a frequency agile CO2
lidar, Proc. SPIE 5268, 184–193 (2004),
http://dx.doi.org/10.1117/12.519106
[10] Laser Based Stand-Off Detection of Biological Agents,
NATO RTO, Final Report of Task Group SET-098/RTG-55 (2010),
http://www.rta.nato.int/pubs/rdp.asp?RDP=RTO-TR-SET-098
[11] V. Vaičikauskas, M. Kaučikas, and V. Švedas, Mobile
spectroscopic system for trace gas detection using a tunable mid-IR
laser, Rev. Sci. Instrum. 78, 023106 (2007),
http://dx.doi.org/10.1063/1.2668940
[12] S. Amoruso, A. Amodeo, M. Armenante, A. Bosellid, L. Mona, M.
Pandolfi, G. Pappalardo, R. Velottad, N. Spinelli, and X.Wang,
Development of a tunable IR lidar system, Optics Lasers Eng. 37,
521–532 (2002),
http://dx.doi.org/10.1016/S0143-8166%2801%2900115-4
[13] M. Taslakov, V. Simeonov, and H. van den Bergh, Open path
atmospheric spectroscopy using room temperature operated pulsed
quantum cascade laser, Spectrochim. Acta A 63, 1002–1008
(2006),
http://dx.doi.org/10.1016/j.saa.2005.11.007
[14] W.W. Harper, J.D. Strasburg, P.M. Aker, and J.F. Schultz, Remote
Chemical Sensing Using Quantum Cascade Lasers, Pacific
Northwest National Laboratory Report PNNL-14525 (Richland,
Washington 99352, USA, 2004),
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-14525.pdf
[15] K. Miyamoto and H. Ito, Wavelength-agile mid-infrared (5–10 μm)
generation using a galvano-controlled KTiOPO4 optical
parametric oscillator, Opt. Lett. 32, 274–276 (2007),
http://dx.doi.org/10.1364/OL.32.000274
[16] M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell,
ZnGeP2 parametric oscillator pumped by a
linewidth-narrowed parametric 2 μm source, Opt. Lett. 31,
1878–1880 (2006),
http://dx.doi.org/10.1364/OL.31.001878
[17] S. Haidar, K. Miyamoto, and H. Ito, Generation of tunable
mid-IR (5.5–9.3 μm) from a 2 μm pumped ZnGeP2
optical parametric oscillator, Opt. Commun. 241, 173–178
(2004),
http://dx.doi.org/10.1016/j.optcom.2004.06.065
[18] K.L. Vodopyanov and P.G. Schunemann, Broadly tunable
noncritically phase-matched ZnGeP2 optical parametric
oscillator with a 2-μJ pump threshold, Opt. Lett. 28,
441–443 (2003),
http://dx.doi.org/10.1364/OL.28.000441
[19] T. Schroeder, Two-stage nanosecond OPO based on LiNbO3
and AgGaSe2 tunable from 3 μm to 6 μm,
in: Lasers and Electro-Optics, 2001, CLEO’01, Technical
Digest, Summaries of papers presented at the conference (IEEE,
2002) pp. 450–451
[20] E. Cheung, S. Palese, H. Injeyan, C. Hoefer, R. Hilyard, H.
Komine, J. Gish, and W. Bosenberg, High power optical parametric
oscillator source, in: Proceedings of IEEE Aerospace Conference,
Vol. 3 (2000) pp. 55–59,
http://dx.doi.org/10.1109/AERO.2000.879831
[21] H. Komine, J.M. Fukumoto, W.H. Long, and E.A. Stappaerts,
Noncritically phase matched mid- infrared generation in AgGaSe2,
IEEE J. Sel. Topics Quant. Electron. 1, 44–49 (1995),
http://dx.doi.org/10.1109/2944.468373
[22] T. Chuang and R. Burnham, Multiple mid-infrared generation
using PPLN and AgGaSe2 OPOs, in: Lasers and
Electro-Optics, 1998, CLEO 98, Technical Digest, Summaries of
papers presented at the Conference (IEEE, 2002) pp. 541–542
[23] Y. Isyanova, A. Dergachev, D.Welford, and P.F. Moulton,
Multi-wavelength, 1.5–10 μm tunable, tandem OPO, in: Advanced
Solid State Lasers, eds. M. Fejer, H. Injeyan, and U. Keller,
Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of
America, 1999), paper WB4,
http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1999-WB4
[24] S. Chandra, T. Allik, G. Catella, R. Utano, and J. Hutchinson,
Continuously tunable, 6–14 μm silver-gallium selenide
optical parametric oscillator pumped at 1.57 μm, Appl. Phys.
Lett. 71, 584–586 (1997),
http://dx.doi.org/10.1063/1.119920
[25] Y. Ehrlich, S. Pearl, G. Peleg, and S. Fastig, High brightness
tunable OPO source for 8–12 μm dial, in: 22nd
International Laser Radar Conference, eds. G. Pappalardo and
A. Amodeo (ESA, Paris, 2004) p. 191,
http://articles.adsabs.harvard.edu//full/2004ESASP.561..191E/0000191.000.html
[26] S. Fastig, Y. Ehrlich, S. Pearl, E. Naor, Y. Kraus, T. Inbar,
and D. Katz, Multi-spectral lidar system – design, build and test,
in: 23rd International Laser Radar Conference, eds. C.
Nagasawa and N. Sugimoto (2006) pp. 20–27
[27] J.M. Fukumoto, W. Katata, E.J. Griffin, C.R. Swim, and J.A.
Fox, All solid-state, 8–12 μm continuously tunable DIAL
laser transmitter with pattern-controllable, rapid wavelength
switching, in: Advanced Solid-State Photonics, ed. J.
Zayhowski (OSA, 2003) paper 131,
http://www.opticsinfobase.org/abstract.cfm?id=141440#abstract
[28] P.B. Phua, K.S. Lai, R.F. Wu, and T.C. Chong, High-effciency
mid-infrared ZnGeP2 optical parametric oscillator in a
multimode-pumped tandem optical parametric oscillator, Appl. Optics
38, 563–565 (1999),
http://dx.doi.org/10.1364/AO.38.000563
[29] G. Rustad, S. Nicolas, O. Nordseth, and G. Arisholm, High pulse
energy mid-infrared laser source, Proc. SPIE 5989, 598904
(2005),
http://dx.doi.org/10.1117/12.629870
[30] R.E. Warren and R.G. Vanderbeek, Detection and classification
of atmospheric aerosols using multi-wavelength CO2 lidar,
Proc. SPIE 6554, 65540V (2007),
http://dx.doi.org/10.1117/12.722414
[31] R.E. Warren and R.G. Vanderbeek, Parallel estimation of
path-integrated concentration and vapor absorptivity using
topographic backscatter lidar, Proc. SPIE 5887, 58870Q
(2005),
http://dx.doi.org/10.1117/12.620454
[32] Testing and Evaluation of Standoff Chemical Agent Detectors,
National Research Council, Committee on Testing and Evaluation of
Standoff Chemical Agent Detectors (The National Academies Press,
Washington, USA, 2003),
http://www.amazon.com/Testing-Evaluation-Standoff-Chemical-Detectors/dp/0309087406/
[33] T. Iseki, H. Tal, and K. Kimura, A portable remote methane
sensor using a tunable diode laser, Meas. Sci. Technol. 11,
594–602 (2000),
http://dx.doi.org/10.1088/0957-0233/11/6/302
[34] List of Extremely Hazardous Substances and Data for Hazards
Analysis (Exhibit C), in: Technical Guidance for Hazards
Analysis. Emergency Planning for Extremely Hazardous Substances,
U.S. Environmental Protection Agency, Federal Emergency Management
Agency, U.S. Department of Transportation, December 1987, pp.
C2–C11,
http://www.epa.gov/oem/docs/chem/tech.pdf
[35] Atmospheric Transmission, Emission and Scattering, ed.
T.G. Kyle (Pergamon Press, Oxford, New York, Seoul, Tokyo, 1991),
http://www.amazon.com/Atmospheric-Transmission-Emission-Scattering-Thomas/dp/0080402879/
[36] G.R. Osche, Optical Detection Theory for Laser Applications
(Wiley, New York, 2002),
http://www.amazon.com/Optical-Detection-Theory-Applications-Applied/dp/0471224111/
[37] R. Mezheris, Laser Remote Sounding (Mir, Moscow, 1987)
[in Russian]
[38] P. Weibring, C. Abrahamsson, M. Sjöholm, J.N. Smith, H. Edner,
and S. Svanberg, Multi-component chemical analysis of gas mixtures
using a continuously tuneable lidar system, Appl. Phys. B 79,
525–530 (2004),
http://dx.doi.org/10.1007/s00340-004-1565-8
[39] Open Path Technologies: Measurement at a Distance. Lidar,
http://clu-in.org/programs/21m2/openpath/lidar/#chemical
[40] P. Weibring and S. Svanberg, Versatile mobile lidar system for
enviromental monitoring, Appl. Opt. 42, 3583–3594 (2003),
http://dx.doi.org/10.1364/AO.42.003583
[41] S. O’Connor, H. Walmsley, and H. Pasley, Differential
absorption LIDAR (DIAL) measurements of the mechanisms of volatile
organic compound loss from external floating roofed tanks, Proc.
SPIE 3493, 255–266 (1998),
http://dx.doi.org/10.1117/12.332661
[42] A. Chambers and M. Strosher, Refinery Demonstration of
Optical Technologies for Measurement of Fugitive Emissions and for
Leak Detection (Alberta Research Council Inc., 2006),
http://www.clu-in.org/programs/21m2/lit_show.cfm?id=5677
[43] A.R. Geiger and S.N. Prasad, Mid-infrared DIAL lidar for
petroleum exploration and pipeline monitoring, Proc. SPIE 2374,
240–248 (1995),
http://dx.doi.org/10.1117/12.205014
[44] P.G. Philippov, Yu.A. Bakhirkin, V.N. Moiseev, R.N. Pichtelev,
S.N. Gurkin, and I.A. Zhutchenko, DIAL infrared lidar for monitoring
of main pipelines and gas industry objects, Proc. SPIE 3504,
119-127 (1998),
http://dx.doi.org/10.1117/12.319589
[45] B. Belanger, A. Fougeres, M. Talbot, and J. Cormier, Industrial
site particulate pollution monitoring with an eye-safe and scanning
industrial fiber lidar, Proc. SPIE 4199, 67–76 (2000),
http://dx.doi.org/10.1117/12.417362
[46] J. Heiser and A. Sedlacek, Using LIDAR to measure
perflurocarbon tracers for the verification and monitoring of cap
and cover systems, Water Air Soil Pollut. 170, 345–357
(2006),
http://dx.doi.org/10.1007/s11270-005-9007-8
[47] Flight Testing of an Advanced Airborne Natural Gas Leak
Detection System, Final Report, ITT Industries Space Systems
(Rochester, NY, USA, 2005),
http://www.netl.doe.gov/technologies/oil-gas/publications/td/41877_final.PDF
[48] U.S. DOE, Field testing of remote sensor gas leak detection
systems, Rocky Mountain Oilfield Testing Center (RMOTC,
Casper, WY, 2004),
http://www.netl.doe.gov/technologies/oil-gas/publications/td/Final%20Report_RMOTC.pdf
[49] A.E. Degtiarev, A.R. Geiger, and R.D. Richmond, Compact
mid-infrared DIAL lidar for ground-based and airborne pipeline
monitoring, Proc. SPIE 4882, 432–441 (2003),
http://dx.doi.org/10.1117/12.462573