[PDF]    http://dx.doi.org/10.3952/lithjphys.50401

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 403–404 (2010)

Short communication

MORSE’S RADIAL WAVE FUNCTION
J.H. Caltenco, J. López-Bonilla, and R. Peña-Rivero
Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Anexo Edif. 3, Col. Lindavista CP, 07738 México DF
E-mail: jlopezb@ipn.mx

Received 26 April 2010; revised 9 September 2010; accepted 25 October 2010

We show that the matrix elements m|eβx|n\langle m \vert \mathrm{e}^{\beta x} \vert n \rangle for the one-dimensional harmonic oscillator permit to resolve the vibrational Schrödinger equation for the Morse interaction.
Keywords: Morse potential, one-dimensional harmonic oscillator, matrix elements
PACS: 02.10.Yn, 03.65.Ge, 03.65.Fd


MORSE RADIALIOJI BANGINĖ FUNKCIJA
J.H. Caltenco, J. López-Bonilla, R. Peña-Rivero
Nacionalinis politechnikos institutas, Meksikas, Meksika

Parodoma, kad vibracinius Šrėdingerio lygties su Morse sąveika sprendinius galima išreikšti vienmačio harmoninio osciliatoriaus matriciniais elementais.


References / Nuorodos


[1] J. López-Bonilla and G. Ovando, Matrix elements for the one-dimensional harmonic oscillator, Bull. Irish Math. Soc. (44), 61 (2000),
http://www.maths.tcd.ie/pub/ims/bull44/oscillator.ps
[2] W. Duch, Matrix elements of xk and e xxk in the harmonic oscillator basis, J. Phys. A 16(18), 4233 (1983),
http://dx.doi.org/10.1088/0305-4470/16/18/024
[3] J. Morales, L. Sandoval, and A. Palma, Int. J. Quant. Chem. 29, 211 (1986),
http://dx.doi.org/10.1002/qua.560290211
[4] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (John Wiley and Sons, New York, 1972)
[5] P.M. Morse, Diatomic molecules according to wave mechanics-vibrational levels, Phys. Rev. 34(1), 57 (1929),
http://dx.doi.org/10.1103/PhysRev.34.57
[6] M.A. Morrison, Understanding Quantum Physics (Prentice–Hall, New Jersey, 1990),
http://www.amazon.com/Understanding-Quantum-Physics-Users-Manual/dp/0137479085/
[7] O.L. de Lange and R.E. Raab, Operator Methods in Quantum Mechanics (Clarendon Press, Oxford, 1991),
http://www.amazon.com/Operator-Methods-Quantum-Mechanics-publications/dp/0198539614/
[8] J.N. Huffaker and P.H. Dwivedi, Factorization method treatment of the perturbed Morse oscillator, J. Math. Phys. 16(4), 862 (1975),
http://dx.doi.org/10.1063/1.522633
[9] Ch.S. Johnson Jr. and L.G. Pedersen, Problems and Solutions in Quantum Chemistry and Physics (Dover, New York, 1987),
http://www.amazon.com/Problems-Solutions-Quantum-Chemistry-Physics/dp/048665236X/
[10] M. Berrondo, J. López-Bonilla, and A. Palma, Matrix elements for the Morse potential using ladder operators, Int. J. Quantum Chem. 31(2), 243 (1987),
http://dx.doi.org/10.1002/qua.560310205
[11] F. Copper, A. Khare, and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rep. 251, 267 (1995),
http://dx.doi.org/10.1016/0370-1573(94)00080-M
[12] S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1971)