[PDF]
http://dx.doi.org/10.3952/lithjphys.50402
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 405–411 (2010)
METASTABLE CONFIGURATIONS OF
WIGNER CRYSTALS IN A CIRCULAR TRAP
E. Anisimovas, O. Rancova, and T.
Varanavičius
Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: egidijus.anisimovas@ff.vu.lt
Received 14 September 2010; revised 27 October 2010; accepted 15
December 2010
We model the formation of ordered
structures in systems consisting of up to 52 identical particles
interacting by Coulomb repulsion forces and confined within a
two-dimensional parabolic trap. Our algorithm consists of a number
of Metropolis steps followed by the steepest-descent minimization
of the total potential energy of the system. The role of the first
(Metropolis) stage is to create a random canonically distributed
configuration, while the subsequent minimization locates the
closest local minimum starting from this random configuration. In
most cases we find that more than one stable configuration may be
formed, and often the lowest-energy configuration is not the most
probable one. The concept of configurational entropy is introduced
to quantify the uncertainty due to the availability of several
alternative structures.
Keywords: Wigner
crystallization, Monte Carlo simulation, entropy
PACS: 05.20.-y, 61.46.Bc
METASTABILIOS
VIGNERIO KRISTALŲ KONFIGŪRACIJOS APSKRITOJE GAUDYKLĖJE
E. Anisimovas, O. Rancova, T.
Varanavičius
Vilniaus universitetas, Vilnius,
Lietuva
Tiriamas tvarkingų darinių
formavimasis sistemose, sudarytose iš N 6 52 identiškų dalelių,
esančių apskritoje dvimatėje gaudyklėje ir tarpusavyje
sąveikaujančių Kulono stūmos jėgomis. Skaitmeniniam modeliavimui
pasitelkiami Metropolio algoritmas ir greičiausio nusileidimo
metodas. Metropolio algoritmo paskirtis yra sugeneruoti
atsitiktinę (kanoninio pasiskirstymo) dalelių padėčių
konfigūraciją. Tuo tarpu greičiausio nusileidimo metodas leidžia
aptikti artimiausią sąveikos energijos minimumą atitinkančią
stabiliąkonfigūraciją. Daugeliu atvejų tokių konfigūracijų randame
keletą ir žemiausios energijos konfigūracija (pagrindinė sistemos
būsena) dažnai nėra labiausiai tikėtina. Siekiant kiekybiškai
įvertinti sistemos struktūros neapibrėžtumą, atsirandantį dėl
keleto konkuruojančių konfigūracijų buvimo, įvedama konfigūracinės
entropijos sąvoka.
References / Nuorodos
[1] E. Rousseau, D. Ponarin, L. Hristakos, O. Avenel, E. Varoquaux,
and Y. Mukharsky, Addition spectra of Wigner islands of electrons on
superfluid helium, Phys. Rev. B 79, 045406 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.045406
[2] F. Cavaliere, U. De Giovannini, M. Sassetti, and B. Kramer,
Transport properties of quantum dots in the Wigner molecule regime,
New J. Phys. 11, 123004 (2009),
http://dx.doi.org/10.1088/1367-2630/11/12/123004
[3] R. Côté, J.-F. Jobidon, and H.A. Fertig, Skyrme and Wigner
crystals in graphene, Phys. Rev. B 78, 085309 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.085309
[4] H. Kählert, P. Ludwig, H. Baumgartner, M. Bonitz, S. Käding, D.
Block, A. Melzer, and A. Piel, Probability of metastable
configurations in spherical three-dimensional Yukawa crystals, Phys.
Rev. E 78, 036408 (2008),
http://dx.doi.org/10.1103/PhysRevE.78.036408
[5] T.E. Sheridan and K.D.Wells, Dimensional phase transition in
small Yukawa clusters, Phys. Rev. E 81, 016404 (2010),
http://dx.doi.org/10.1103/PhysRevE.81.016404
[6] M. Bonitz, C. Henning, and D. Block, Complex plasmas: a
laboratory for strong correlations, Rep. Prog. Phys. 73,
066501 (2010),
http://dx.doi.org/10.1088/0034-4885/73/6/066501
[7] E. Wigner, On the interaction of electrons in metals, Phys. Rev.
46, 1002 (1934),
http://dx.doi.org/10.1103/PhysRev.46.1002
[8] C.C. Grimes and G. Adams, Evidence for a liquid-to-crystal phase
transition in a classical, two-dimensional sheet of electrons, Phys.
Rev. Lett. 42, 795 (1979),
http://dx.doi.org/10.1103/PhysRevLett.42.795
[9] E.Y. Andrei, G. Deville, D.C. Glattli, and F.I.B. Williams,
Observation of a magnetically induced Wigner solid, Phys. Rev. Lett.
60, 2765 (1988),
http://dx.doi.org/10.1103/PhysRevLett.60.2765
[10] Y.P. Chen, G. Sambandamurthy, Z.H. Wang, R.M. Lewis, L.W.
Engel, D.C. Tsui, P.D. Ye, L.N. Pfeiffer, and K.W. West, Melting of
a 2D quantum electron solid in high magnetic field, Nature Phys. 2,
452 (2006),
http://dx.doi.org/10.1038/nphys322
[11] Y. Ivanov and A. Melzer, Modes of three dimensional dust
crystals in dusty plasmas, Phys. Rev. E 79, 036402 (2009),
http://dx.doi.org/10.1103/PhysRevE.79.036402
[12] E. Anisimovas, A. Matulis, M.B. Tavernier, and F.M. Peeters,
Power-law dependence of the angular momentum transition fields in
few-electron quantum dots, Phys. Rev. B 69, 075305 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.075305
[13] W. Yang, K. Nelissen, M. Kong, Z. Zeng, and F.M. Peeters,
Structure of binary colloidal systems confined in a
quasi-one-dimensional channel, Phys. Rev. E 79, 041406
(2009),
http://dx.doi.org/10.1103/PhysRevE.79.041406
[14] S.W.S. Apolinario and F.M. Peeters, Melting of anisotropically
confined Coulomb balls, Phys. Rev. B 78, 024202 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.024202
[15] E.L. Altschuler and A. Pérez-Garrido, Defect-free global minima
in Thomson’s problem of charges on a sphere, Phys. Rev. E 73,
036108 (2006),
http://dx.doi.org/10.1103/PhysRevE.73.036108
[16] J.R. Morris, D.M. Deaven, and K.M. Ho, Genetic-algorithm energy
minimization for point charges on a sphere, Phys. Rev. B 53,
1740 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.R1740
[17] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller,
and E. Teller, Equation of state calculations by fast computing
machines, J. Chem. Phys. 21, 1087 (1953),
http://dx.doi.org/10.1063/1.1699114
[18] D.P. Landau and K. Binder, A Guide to Monte Carlo
Simulations in Statistical Physics, 3rd ed. (Cambridge
University Press, 2009),
http://www.cambridge.org/gb/knowledge/isbn/item2428116/
[19] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd ed.
(Cambridge University Press, 2007),
http://www.cambridge.org/gb/knowledge/isbn/item1174754/
[20] M. Matsumoto and T. Nishimura, Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number
generator, ACM Trans. Model. Comput. Simulat. 8, 3 (1998),
http://dx.doi.org/10.2478/s11534-008-0157-3
[21] D.J.C. MacKay, Information Theory, Inference and Learning
Algorithms (Cambridge University Press, 2003),
http://dx.doi.org/10.2277/0521642981
[22] A. Matulis, D. Jarema, and E. Anisimovas, A quasiclassical
approach to strongly correlated quantum dots, Cent. Eur. J. Phys. 7,
704 (2009),
http://dx.doi.org/10.2478/s11534-008-0157-3