[PDF]
http://dx.doi.org/10.3952/lithjphys.50404
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 451–462 (2010)
ESTIMATION OF THE PERMANENT
DIPOLE MOMENT OF BACTERIORHODOPSIN
B.P. Kietis a, M. Macernis b, J. Sulskus
b, and L. Valkunas a,b
a Center for Physical Sciences and Technology,
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: mindaugas.macernis@ff.vu.lt
b Department of Theoretical Physics, Faculty of
Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius,
Lithuania
Received 16 November 2010; revised
1 December 2010; accepted 15 December 2010
The static electric dipole moment
persisting in bacteriorhodopsin was defined from electro-acoustic
measurements of the dried films of purple membranes and compared
with the value estimated from quantum chemical calculations. The
projection of this value normal to the membrane surface is
experimentally estimated to be equal to 40 D and oriented from the
cytoplasmic side to the extracellular side of the membrane. This
value is almost independent of the environment pH. QM/MM
calculations were also performed for the known structures of the
ground and intermediate states of bacteriorhodopsin. According to
calculations the dipole moment is mainly determined by the
cytoplasmic and extracellular coils, while the contribution from
the transmembrane helices is smaller and of the opposite
direction, and this value corresponding to the active centre is
small. The calculated values of the dipole moment of
bacteriorhodopsin in the intermediate states K, L, and M provide
understanding about the origin of the driving force for the proton
pumping. Employing the values of the dipole moments corresponding
to the ground and intermediate states of bacteriorhodopsin,
defined by means of QM/MM calculations, the experimentally
determined photoelectric response of the dried films is explained.
Keywords: dried films of purple
membranes, electrostriction, photo-electric response, pH changes,
molecular mechanics calculations, quantum chemical calculations
PACS: 87.14.ep, 77.65.-j, 82.80.Yc, 83.10.Rs, 03.65.-w
BAKTERIORODOPSINO DIPOLINIO
MOMENTO ĮVERTINIMAS
B.P. Kietis a, M. Mačernis b, J. Šulskus
b, L. Valkūnas a,b
a Fizinių ir technologijos mokslų centro Fizikos
institutas, Vilnius, Lietuva
b Vilniaus universiteto Fizikos fakultetas,
Vilnius, Lietuva
Bakteriorodopsino elektrinis dipolinis momentas
įvertintas iš purpurinių membranų sausose plėvelėse
elektroakustinių matavimų. Nustatyta dipolinio momento projekcijos
į membranos paviršiaus normalę vertė lygi 40 D, kryptis – nuo
citoplazminės į išorinę membranos pusę bei nepriklauso (arba labai
mažai priklauso) nuo aplinkos pH. Norint atskleisti dipolinio
momento susidarymo prigimtį, buvo atlikti žinomų bakteriorodopsino
pagrindinės ir tarpinių struktūrų QM/MM skaičiavimai, iš kurių
paaiškėjo, kad dipolinis momentas daugiausia priklauso nuo
citoplazminės ir išorinės pusės membranos nebaltyminių dalių.
Tarpmembraninės spiralės dipolinio turimo momento dalis yra
mažesnė ir nukreipta priešingai. Apskaičiuotoji aktyvaus centro
dipolinio momento vertė, lyginant su visos struktūros momento
verte, yra maža. Gautos bakteriorodopsino dipolinio momento vertės
K, L ir M būsenoms leidžia geriau suprasti protonovaros prigimtį.
Pagrindinės ir tarpinių būsenų dipolinio momento vertės,
apskaičiuotos QM/MM metodu, buvo panaudotos eksperimentiškai
gautam sausų plėvelių fotoelektriniam atsakui paaiškinti.
References / Nuorodos
[1] D. Oesterhelt and W. Stoeckenius, Functions of a new
photoreceptor membrane, Proc. Natl. Acad. Sci. USA 70,
2853–2857 (1973),
http://dx.doi.org/10.1073/pnas.70.http://dx.doi.org/10.2853
[2] J.K. Lanyi, Proton translocation mechanism and energetics in the
light-driven pump bacteriorhodopsin, Biochim. Biophys. Acta
Bioenerg. 1183, 241–261 (1993),
http://dx.doi.org/10.1016/0005-2728(93)90226-6
[3] J.K. Lanyi, Molecular mechanism of ion transport in
bacteriorhodopsin: Insights from crystallographic, spectroscopic,
kinetic, and mutational studies, J. Phys. Chem. B 104,
11441–11448 (2000),
http://dx.doi.org/10.1021/jp0023718
[4] R. Shinar, S. Druckmann, M. Ottolenghi, and R. Korenstein,
Electric fields effect in bacteriorhodopsin, Biophys. J. 19,
1–5 (1977),
http://dx.doi.org/10.1016/S0006-3495(77)85558-6
[5] S. Saigo, The orientation of purple membranes in electric field,
in: Biological and Chemical Utilization of Solar Energy
(Gakkai Shuppan Center, Tokyo, 1978) pp. 127–131
[6] L. Keszthelyi, Orientation of membrane fragments by electric
field, Biochim. Biophys. Acta Biomembr. 598, 429–436 (1980),
http://dx.doi.org/10.1016/0005-2736(80)90023-1
[7] S. Druckmann and M. Ottolenghi, Electric dichroism in the purple
membrane of Halobacterium halobium, Biophys. J. 33, 263–268
(1981),
http://dx.doi.org/10.1016/S0006-3495(81)84887-4
[8] K. Tsuji and E. Neumann, Structural change in bacteriorhodopsin
induced by electric impulses, Int. J. Biol. Macromol. 3,
231–242 (1981),
http://dx.doi.org/10.1016/0141-8130(81)90033-7
[9] Y. Kimura, A. Ikegami, K. Ohno, S. Saigo, and Y. Takeuchi,
Electric dichroism of purple membrane suspensions, Photochem.
Photobiol. 33, 435–439 (1981),
http://dx.doi.org/10.1111/j.1751-1097.1981.tb05443.x
[10] G. Todorov, S. Sokerov, and S.P. Stoylov, Interfacial electric
polarizability of purple membranes in solution, Biophys. J. 40,
1–5 (1982),
http://dx.doi.org/10.1016/S0006-3495(82)84451-2
[11] S.G. Taneva, G. Todorov, I.B. Petkanchin, and S.P. Stoylov,
Electrooptic study of the deionized form of bacteriorhodopsin, Eur.
Biophys. J. 14, 415–421 (1987),
http://dx.doi.org/10.1007/BF00254865
[12] Y. Kimura, M. Fujiwara, and A. Ikegami, Anisotropic electric
properties of purple membrane and their change during the
photoreaction cycle, Biophys. J. 45, 615–625 (1984),
http://dx.doi.org/10.1016/S0006-3495(84)84200-9
[13] J. Otomo, K. Ohno, Y. Takeuchi, and A. Ikegami, Surface charge
movements of purple membrane during light-dark adaptation, Biophys.
J. 50, 205–211 (1986),
http://dx.doi.org/10.1016/S0006-3495(86)83454-3
[14] S.G. Taneva and I.B. Petkanchin, Surface electric properties of
biological systems, Trends Photochem. Photobiol. 6, 113–139
(1999)
[15] P. Kietis, M. Vengris, and L. Valkunas,
Electrical-to-mechanical coupling in purple membranes: membrane as
electrostrictive medium, Biophys. J. 80, 1631–1640 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)76135-8
[16] D. Porschke, Electrostatics and electrodynamics of
bacteriorhodopsin, Biophys. J. 71, 3381–3391 (1996),
http://dx.doi.org/10.1016/S0006-3495(96)79531-0
[17] K. Barabas, A. Der, Z. Dancshazy, P. Ormos, L. Keszthelyi, and
M. Marden, Electro-optical measurements on aqueous suspension of
purple membrane from Halobacterium halobium, Biophys. J. 43,
5–11 (1983),
http://dx.doi.org/10.1016/S0006-3495(83)84317-3
[18] I.B. Petkanchin, S.G. Taneva, and G.S. Todorov, Influence of
surface active substances on the electric surface properties of
purple membrane fragments, Colloids Surf. 52, 257–267
(1991),
http://dx.doi.org/10.1016/0166-6622(91)80019-K
[19] E. Papp, G. Fricsovszky, and G. Meszena, Electrodichroism of
purple membrane: ionic strength dependence, Biophys. J. 49,
1089–1100 (1986),
http://dx.doi.org/10.1016/S0006-3495(86)83737-7
[20] R. Jonas, Y. Koutalos, and T.G. Ebrey, Purple membrane: surface
charge density and the multiple effect of pH and cations, Photochem.
Photobiol. 52, 1163–1177 (1990),
http://dx.doi.org/10.1111/j.1751-1097.1990.tb08455.x
[21] B. Ehrenberg and Y. Berezin, Surface potential on purple
membranes and its sidedness studied by a resonance Raman dye probe,
Biophys. J. 45, 663–670 (1984),
http://dx.doi.org/10.1016/S0006-3495(84)84208-3
[22] G. Varo, Dried oriented purple membrane samples, Acta Biol.
Acad. Sci. Hung. 32, 301–310 (1981)
[23] K.A. Fisher, K. Yanagimoto, and W. Stoeckenius, Oriented
adsorption of purple membrane to cationic surfaces, J. Cell Biol. 77,
611–620 (1978),
http://dx.doi.org/10.1083/jcb.77.2.611
[24] I.G. Geza, L. Kelerman, A. Kulcsar, M. Lakatosand, and G. Varo,
Photocycle of dried acid purple from of bacteriorhodopsin, Biophys.
J. 81, 3432–3441 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)75975-9
[25] L.D. Landau and E.M. Lifshitz, Electrodynamics of
Continuous Media (Pergamon Press, Oxford U.K., 1960) pp.
36–91,
http://www.amazon.com/Electrodynamics-Continuous-Media-L-Landau/dp/B000OET2NI/
[26] G. Varo and L. Keszthelyi, Photoelectric signals from dried
oriented purple membranes of Halobacterium halobium, Biophys. J. 43,
47–51 (1983),
http://dx.doi.org/10.1016/S0006-3495(83)84322-7
[27] P.B. Kietis, P. Saudargas, G. Váró, and L. Valkunas, External
electric control of the proton pumping in bacteriorhodopsin, Eur.
Biophys. J. 36, 199–211 (2007),
http://dx.doi.org/10.1007/s00249-006-0120-4
[28] D.A. Case, T.A. Darden, T.E. Cheatham et al., AMBER 9
Users’ Manual (University of California, San Francisco, 2006),
http://www.docstoc.com/docs/52946735/Amber-9-Manual
[29] H. Luecke, B. Schobert, H.T. Richter, J.P. Cartailler, and J.K.
Lanyi, Structure of bacteriorhodopsin at 1.55 resolution,
J. Mol. Biol. 291, 899–911 (1999),
http://dx.doi.org/10.1006/jmbi.1999.3027
[30] B. Schobert, J. Cupp-Vickery, V. Hornak, S. Smith, and J.
Lanyi, Crystallographic structure of the K intermediate of
bacteriorhodopsin: conservation of free energy after
photoisomerization of the retinal, J. Mol. Biol. 321,
715–726 (2002),
http://dx.doi.org/10.1016/S0022-2836(02)00681-2
[31] J.K. Lanyi and B. Schobert, Structural changes in the L
photointermediate of bacteriorhodopsin, J. Mol. Biol. 365,
1379–1392 (2007),
http://dx.doi.org/10.1016/j.jmb.2006.11.016
[32] J. Lanyi and B. Schobert, Crystallographic structure of the
retinal and the protein after deprotonation of the Schiff base: the
switch in the bacteriorhodopsin photocycle, J. Mol. Biol. 321,
727–737 (2002),
http://dx.doi.org/10.1016/S0022-2836(02)00682-4
[33] N. Guex and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer:
An environment for comparative protein modeling, Electrophoresis 18,
2714–2723 (1997),
http://dx.doi.org/10.1002/elps.1150181505
[34] M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian
03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004)
[35] R.G. Parr and W. Yang, Density Functional Theory of Atoms
and Molecules (Oxford University Press, Oxford, U.K., 1989),
http://www.amazon.com/Density-Functional-Molecules-International-Monographs-Chemistry/dp/0195092767/
[36] A.D. Becke, Density-functional thermochemistry. III. The role
of exact exchange, J. Chem. Phys. 98, 5648–5652 (1993),
http://dx.doi.org/10.1063/1.464913
[37] W. Humphrey, A. Dalke, and K. Schulten, VMD – visual molecular
dynamics, J. Molec. Graphics 14, 33–38 (1996),
http://dx.doi.org/10.1016/0263-7855(96)00018-5
[38] I. Ermolina, A. Strinkovski, A. Lewis, and Y. Felmon,
Observation of liquid-crystal-like ferroelectric behavior in a
biological membrane, J. Phys. Chem. B 105, 2673–2676 (2001),
http://dx.doi.org/10.1021/jp001054y
[39] B. Schobert, L.S. Brown, and J.K. Lanyi, Crystallographic
structures of the M and N intermediates of bacteriorhodopsin:
assembly of a hydrogen-bonded chain of water molecules between Asp96
and the retinal Schiff base, J. Mol. Biol. 330, 553–570
(2003),
http://dx.doi.org/10.1016/S0022-2836(03)00576-X
[40] J.K. Lanyi and B. Schobert, Mechanism of proton transport in
bacteriorhodopsin from crystallographic structures of the K, L, M1,
M2, and M2’ intermediates of the photocycle, J. Mol. Biol. 328,
439–450 (2003),
http://dx.doi.org/10.1016/S0022-2836(03)00263-8
[41] K. Edman, P. Nollert, A. Royant, H. Belrhali, E.
Pebay-Peyroula, J. Hajdu, R. Neutze, and E.M. Landau, High
resolution X-ray structure of an early intermediate in the
bacteriorhodopsin photocycle, Nature 401, 822–826 (1999),
http://dx.doi.org/10.1038/44623
[42] K. Edman, A. Royant, G. Larsson, F. Jacobson, T. Taylor, S.D.
Van Der, E.M. Landau, E. Pebay-Peyroula, and R. Neutze, Deformation
of helix C in the low temperature L-intermediate of
bacteriorhodopsin, J. Biol. Chem. 279, 2147–2158 (2004),
http://dx.doi.org/10.1074/jbc.M300709200
[43] H.J. Sass, G. Buldt, R. Gessenich, D. Hehn, D. Neff, R.
Schlesinger, J. Berendzen, and P. Ormos, Structural alterations for
proton translocation in the M state of wild-type bacteriorhodopsin,
Nature 406, 649–653 (2000),
http://dx.doi.org/10.1038/35020607
[44] T. Kouyama, T. Nishikawa, T. Tokuhisa, and H. Okumura, Crystal
structure of the L intermediate of bacteriorhodopsin: evidence for
vertical translocation of a water molecule during the proton pumping
cycle, J. Mol. Biol. 335, 531–546 (2004),
http://dx.doi.org/10.1016/j.jmb.2003.http://dx.doi.org/10.068
[45] K. Takeda, Y. Matsui, N. Kamiya, S. Adachi, H. Okumura, and T.
Kouyama, Crystal structure of the M intermediate of
bacteriorhodopsin: allosteric structural changes mediated by sliding
movement of a transmembrane helix, J. Mol. Biol. 341,
1023–1037 (2004),
http://dx.doi.org/10.1016/j.jmb.2004.06.080
[46] M.T. Facciotti, S. Rouhani, F.T. Burkard, F.M. Betancourt, K.H.
Downing, R.B. Rose, G. McDermott, and R.M. Glaeser, Structure of an
early intermediate in the M-state phase of the bacteriorhodopsin
photocycle, Biophys. J. 81, 3442–3455 (2001),
http://dx.doi.org/10.1016/S0006-3495(01)75976-0
[47] Y. Matsui, K. Sakai, M. Murakami, Y. Shiro, S. Adachi, H.
Okumura, and T. Kouyama, Specific damage induced by X-ray radiation
and structural changes in the primary photoreaction of
bacteriorhodopsin, J. Mol. Biol. 324, 469–481 (2002),
http://dx.doi.org/10.1016/S0022-2836(02)01110-5
[48] R. Rousseau, V. Kleinschmidt, U.W. Schmitt, andD. Marx,
Modeling protonated water networks in bacteriorhodopsin, Phys. Chem.
Chem. Phys. 6, 1848–1859 (2004),
http://dx.doi.org/10.1039/b313220j
[49] G. Mathias and D. Marx, Structures and spectral signatures of
protonated water networks in bacteriorhodopsin, Proc. Natl. Acad.
Sci. USA 104, 6980–6985 (2007),
http://dx.doi.org/10.1073/pnas.0609229104
[50] A.N. Bondar, S. Fischer, J.C. Smith, M. Elstner, and S. Suhai,
Key role of electrostatic interactions in bacteriorhodopsin proton
transfer, J. Am. Chem. Soc. 126, 14668–14677 (2004),
http://dx.doi.org/10.1021/ja047982i
[51] A.N. Bondar, M. Elstner, S. Suhai, J.C. Smith, and S. Fischer,
Mechanism of primary proton transfer in bacteriorhodopsin, Structure
12, 1281–1288 (2004),
http://dx.doi.org/10.1016/j.str.2004.04.016
[52] Y.F. Song, J.J. Mao, and M.R. Gunner, Calculation of proton
transfers in bacteriorhodopsin bR and M intermediates, Biochemistry
42, 9875–9888 (2003),
http://dx.doi.org/10.1021/bi034482d
[53] A.M. Ferreira and D. Bashford, Model for proton transport
coupled to protein conformational change: Application to proton
pumping in the bacteriorhodopsin photocycle, J. Am. Chem. Soc. 128,
16778–16790 (2006),
http://dx.doi.org/10.1021/ja060742d
[54] V.Z. Spassov, H. Luecke, K. Gerwert, and D. Bashford, pKa
calculations suggest storage of an excess proton in a
hydrogen-bonded water network in bacteriorhodopsin, J. Mol. Biol. 312,
203–219 (2001),
http://dx.doi.org/10.1006/jmbi.2001.4902
[55] R.V. Sampogna and B. Honig, Environmental-effects on the
protonation states of active-site residues in bacteriorhodopsin,
Biophys. J. 66, 1341–1352 (1994),
http://dx.doi.org/10.1016/S0006-3495(94)80925-7
[56] S. Hayashi and I. Ohmine, Proton transfer in bacteriorhodopsin:
Structure, excitation, IR spectra, and potential energy surface
analyses by an ab initio QM/MM method, J. Phys. Chem. B 104,
10678–10691 (2000),
http://dx.doi.org/10.1021/jp001508r
[57] S. Hayashi, E. Tajkhorshid, and K. Schulten, Structural changes
during the formation of early intermediates in the bacteriorhodopsin
photocycle, Biophys. J. 83, 1281–1297 (2002),
http://dx.doi.org/10.1016/S0006-3495(02)73900-3