[PDF]
http://dx.doi.org/10.3952/lithjphys.50405
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 377–394 (2010)
Review
QUASICLASSICAL THEORY OF QUANTUM
DOTS
E. Anisimovas a and A. Matulis b
a Department of Theoretical Physics, Vilnius
University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: egidijus.anisimovas@ff.vu.lt
b Semiconductor Physics Institute, Center for
Physical Sciences and Technology, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: amatulis@takas.lt
Received 30 November 2010; accepted
15 December 2010
We review the quasiclassical
theory of quantum dots. The starting point of the developed
approximate approaches is the observation that in large (in
comparison to the effective Bohr radius) quantum dots the energy
of the classical Coulomb interactions dominates over the
quantum-mechanical kinetic energy. This dominance is further
enhanced by application of a perpendicular magnetic field. The
classical regime is marked by the formation of structures (the
Wigner crystal) and structural transitions. The nature of these
phenomena is indeed classical, and they can be successfully
tackled using classical approaches which are transparent and easy
to understand. In this way heavy calculations typical of
quantum-mechanical schemes are avoided and the quantum effects are
included in an perturbative manner. We discus, in particular, the
application of the renormalized perturbation series to the energy
spectra, the structural transitions, the power law behaviour of
the critical fields, the global (persistent) and local currents in
quantum dots, and dissipation in mixed systems with both quantum
and classical degerees of freedom.
Keywords: quantum dots, quasiclassical
approximation, Wigner crystal
PACS: 73.21.La, 03.65.Sq
KVAZIKLASIKINĖ KVANTINIŲ TAŠKŲ
TEORIJA
E. Anisimovas a, A. Matulis b
a Vilniaus universitetas, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centro
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Kvantiniai taškai yra dariniai, kuriuose
elektrono judėjimas yra apribotas visomis trimis erdvės kryptimis,
o energijos spektras diskretus. Taigi, kvantiniai taškai yra
dirbtiniai atomai: valdomų parametrų natūralių atomų analogai.
Dideliųmatmenų (lyginant su efektiniu Boro spinduliu) kvantiniuose
taškuose klasikinė kuloninės stūmos energija žymiai viršija
kvantinę kinetinę energiją. Elektrostatinės sąveikos santykinę
svarbą dar labiau išryškina stiprus taško plokštumai statmenas
magnetinis laukas. Todėl, viena vertus, šiuose kvantiniuose
taškuose yra stebimi kolektyviniai reiškiniai (Vignerio
kristalizacija), antra vertus, jų fizika yra iš esmės klasikinė.
Straipsnyje apžvelgiama kvaziklasikinė kvantinių taškų teorija,
išplėtota pasinaudojus šiais pastebėjimais. Taikomi klasikiniai
metodai leidžia išvengti sudėtingų ir nevaizdžių kvantinių
mechaninių skaičiavimų. Klasikiniais metodais gauti rezultatai yra
lengvai suprantami ir interpretuojami, o į kvantines pataisas
atsižvelgiama kaip į mažus trikdžius. Aptariamas renormalizuotos
trikdžių eilutės taikymas energijų spektrams skaičiuoti, struktūrų
susidarymas ir virsmai kvantiniuose taškuose, laipsniniai dėsniai,
nusakantys kritinių parametrų elgesį, ir disipacija mišriose
sistemose, pasižyminčiose klasikinių ir kvantinių laisvės laipsnių
sąveika.
References / Nuorodos
[1] S.M. Reimann and M. Manninen, Electronic structure of quantum
dots, Rev. Mod. Phys. 74, 1283 (2002),
http://dx.doi.org/10.1103/RevModPhys.74.1283
[2] L.P. Kouwenhoven, D.G. Austing, and S. Tarucha, Few-electron
quantum dots, Rep. Prog. Phys. 64, 701 (2001),
http://dx.doi.org/10.1088/0034-4885/64/6/201
[3] D. Bimberg and N.N. Ledentsov, Quantum dots: lasers and
amplifiers, J. Phys. Condens. Matter 15, R1063 (2003),
http://dx.doi.org/10.1088/0953-8984/15/24/201
[4] V.A. Shchukin and D. Bimberg, Spontaneous ordering of
nanostructures on crystal surfaces, Rev. Mod. Phys. 71, 1125
(1999),
http://dx.doi.org/10.1103/RevModPhys.71.1125
[5] D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum Dot
Heterostructures (Wiley, Chichester, 1998),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471973882.html
[6] Q. Xie, A. Madhukar, P. Chen, and N.P. Kobayashi, Vertically
self-organized InAs quantum box islands on GaAs(100), Phys. Rev.
Lett. 75, 2542 (1995),
http://dx.doi.org/10.1103/PhysRevLett.75.2542
[7] R.C. Ashoori, H.L. Stormer, J.S.Weiner, L.N. Pfeiffer, K.W.
Baldwin, and K.W.West, N-electron ground state energies of a quantum
dot in magnetic field, Phys. Rev. Lett. 71, 613 (1993),
http://dx.doi.org/10.1103/PhysRevLett.71.613
[8] S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P.
Kouwenhoven, Shell filling and spin effects in a few electron
quantum dot, Phys. Rev. Lett. 77, 3613 (1996),
http://dx.doi.org/10.1103/PhysRevLett.77.3613
[9] M.A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore,
and A.E. Wetsel, Observation of discrete electronic states in a
zero-dimensional semiconductor nanostructure, Phys. Rev. Lett. 60,
535 (1988),
http://dx.doi.org/10.1103/PhysRevLett.60.535
[10] T.P. Smith, III, K.Y. Lee, C.M. Knoedler, J.M. Hong, and D.P.
Kern, Electronic spectroscopy of zero-dimensional systems, Phys.
Rev. B 38, 2172 (1988),
http://dx.doi.org/10.1103/PhysRevB.38.2172
[11] Ch. Sikorski and U. Merkt, Spectroscopy of electronic states in
InSb quantum dots, Phys. Rev. Lett. 62, 2164 (1989),
http://dx.doi.org/10.1103/PhysRevLett.62.2164
[12] P.A. Maksym and T. Chakraborty, Quantum dots in a magnetic
field: Role of electron-electron interactions, Phys. Rev. Lett. 65,
108 (1990),
http://dx.doi.org/10.1103/PhysRevLett.65.108
[13] D. Pfannkuche and R.R. Gerhardts, Quantum-dot helium: Effects
of deviations from a parabolic confinement potential, Phys. Rev. B 44,
13132 (1991),
http://dx.doi.org/10.1103/PhysRevB.44.13132
[14] W. Kohn, Cyclotron resonance and de Haas–van Alphen
oscillations of an interacting electron gas, Phys. Rev. 123,
1242 (1961),
http://dx.doi.org/10.1103/PhysRev.123.1242
[15] L. Brey, N.F. Johnson, and B.I. Halperin, Optical and
magneto-optical absorption in parabolic quantum wells, Phys. Rev. B
40, 10647 (1989),
http://dx.doi.org/10.1103/PhysRevB.40.10647
[16] F.M. Peeters, Magneto-optics in parabolic quantum dots, Phys.
Rev. B 42, 1486 (1990),
http://dx.doi.org/10.1103/PhysRevB.42.1486
[17] M.B. Tavernier, E. Anisimovas, F.M. Peeters, B. Szafran, J.
Adamowski, and S. Bednarek, Four-electron quantum dot in a magnetic
field, Phys. Rev. B 68, 205305 (2003),
http://dx.doi.org/10.1103/PhysRevB.68.205305
[18] S.-R.E. Yang and A.H. MacDonald, Coupling between edge and bulk
in strong-field quantum dots, Phys. Rev. B 66, 041304
(2002),
http://dx.doi.org/10.1103/PhysRevB.66.041304
[19] S.M. Reimann, M. Koskinen, and M. Manninen, Formation of Wigner
molecules in small quantum dots, Phys. Rev. B 62, 8108
(2000),
http://dx.doi.org/10.1103/PhysRevB.62.8108
[20] B. Szafran, S. Bednarek, J. Adamowski, M.B. Tavernier, E.
Anisimovas, and F.M. Peeters, Accuracy of the Hartree–Fock method
forWigner molecules at high magnetic fields, Eur. Phys. J. D 28,
373 (2004),
http://dx.doi.org/10.1140/epjd/e2003-00320-5
[21] M. Ferconi and G. Vignale, Density functional theory of the
phase diagram of maximum-density droplets in two-dimensional quantum
dots in a magnetic field, Phys. Rev. B 56, 12108 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.12108
[22] U. De Giovannini, F. Cavaliere, R. Cenni, M. Sassetti, and B.
Kramer, Spin-projected unrestricted Hartree–Fock ground states for
harmonic quantum dots, Phys. Rev. B 77, 035325 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.035325
[23] K. Hirose and N.S. Wingreen, Spin-density-functional theory of
circular and elliptical quantum dots, Phys. Rev. B 59, 4604
(1999),
http://dx.doi.org/10.1103/PhysRevB.59.4604
[24] C. Yannouleas and U. Landman, Spontaneous symmetry breaking in
single and molecular quantum dots, Phys. Rev. Lett. 82, 5325
(1999),
http://dx.doi.org/10.1103/PhysRevLett.82.5325
[25] S.M. Reimann, M. Koskinen, M. Manninen, and B.R. Mottelson,
Quantum dots in magnetic fields: Phase diagram and broken symmetry
at the maximum-density-droplet edge, Phys. Rev. Lett. 83,
3270 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.3270
[26] M.B. Tavernier, E. Anisimovas, and F.M. Peeters, Ground state
and vortex structure of the N = 5 and N = 6 electron
quantum dot, Phys. Rev. B 74, 125305 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.125305
[27] E. Wigner, On the interaction of electrons in metals, Phys.
Rev. 46, 1002 (1934),
http://dx.doi.org/10.1103/PhysRev.46.1002
[28] C.C. Grimes and G. Adams, Evidence for a liquid-to-crystal
phase transition in a classical, two-dimensional sheet of electrons,
Phys. Rev. Lett. 42, 795 (1979),
http://dx.doi.org/10.1103/PhysRevLett.42.795
[29] E. Rousseau, D. Ponarin, L. Hristakos, O. Avenel, E. Varoquaux,
and Y. Mukharsky, Addition spectra of Wigner islands of electrons on
superfluid helium, Phys. Rev. B 79, 045406 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.045406
[30] E.Y. Andrei, G. Deville, D.C. Glattli, F.I.B. Williams, E.
Paris, and B. Etienne, Observation of a magnetically induced Wigner
solid, Phys. Rev. Lett. 60, 2765 (1988),
http://dx.doi.org/10.1103/PhysRevLett.60.2765
[31] T.H. Oosterkamp, J.W. Janssen, L.P. Kouwenhoven, D.G. Austing,
T. Honda, and S. Tarucha, Maximum-density droplet and charge
redistributions in quantum dots at high magnetic fields, Phys. Rev.
Lett. 82, 2931 (1999),
http://dx.doi.org/10.1103/PhysRevLett.82.2931
[32] A. Matulis and E. Anisimovas, A quasiclassical approach to
strongly correlated quantum dots in intense magnetic fields, J.
Phys. Condens. Matter 17, 3851 (2005),
http://dx.doi.org/10.1088/0953-8984/17/25/012
[33] E. Anisimovas and A. Matulis, A quasiclassical model of
many-electron quantum dots, Lithuanian J. Phys. 45, 235
(2005),
http://dx.doi.org/10.3952/lithjphys.45408
[34] A. Matulis and F.M. Peeters, Renormalized perturbation series
for quantum dots, J. Phys. Condens. Matter 6, 7751 (1994),
http://dx.doi.org/10.1088/0953-8984/6/38/013
[35] E. Anisimovas and A. Matulis, Energy spectra of few-electron
quantum dots, J. Phys. Condens. Matter 10, 601 (1998),
http://dx.doi.org/10.1088/0953-8984/10/3/013
[36] J.O. Fjærestad, A. Matulis, and K.A. Chao, Perturbation theory
of interacting electrons in a quantum dot with hard-wall confinement
potential, Physica Scripta T69, 138 (1997),
http://dx.doi.org/10.1088/0031-8949/1997/T69/024
[37] A. Matulis, J.O. Fjærestad and K.A. Chao, Electron interaction
in a quantum dot with hard wall confinement potential, Int. J. Mod.
Phys. B 11, 1035 (1997),
http://dx.doi.org/10.1142/S0217979297000538
[38] A. Gonzalez, B. Partoens, A. Matulis, and F.M. Peeters,
Ground-state energy of confined charged bosons in two dimensions,
Phys. Rev. B 59, 1653 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.1653
[39] B. Partoens, A. Matulis, and F.M. Peeters, Two-electron
artificial molecule, Phys. Rev. B 59, 1617 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.1617
[40] B. Partoens, V.A. Schweigert, and F.M. Peeters, Classical
double-layer atoms: Artificial molecules, Phys. Rev. Lett. 79,
3990 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.3990
[41] A. Matulis and F.M. Peeters, Wigner crystallization in the two
electron quantum dot, Solid State Commun. 117, 655 (2001),
http://dx.doi.org/10.1016/S0038-1098(01)00013-8
[42] E. Anisimovas, A. Matulis, M.B. Tavernier, and F.M. Peeters,
Power-law dependence of the angular momentum transition fields in
few-electron quantum dots, Phys. Rev. B 69, 075305 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.075305
[43] E. Anisimovas, M.B. Tavernier, and F.M. Peeters,
Electron-vortex separation in quantum dots, Phys. Rev. B 77,
045327 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.045327
[44] C. Yannouleas and U. Landman, Two-dimensional quantum dots in
high magnetic fields: Rotating-electron-molecule versus
composite-fermion approach, Phys. Rev. B 68, 035326 (2003),
http://dx.doi.org/10.1103/PhysRevB.68.035326
[45] M. Büttiker, Y. Imry, and R. Landauer, Josephson behavior in
small normal one-dimensional rings, Phys. Lett. A 96, 365
(1983),
http://dx.doi.org/10.1016/0375-9601(83)90011-7
[46] L.P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat,
Magnetization of mesoscopic copper rings: Evidence for persistent
currents, Phys. Rev. Lett. 64, 2074 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.2074
[47] E. Anisimovas, A. Matulis, and F.M. Peeters, Currents in a
many-particle parabolic quantum dot under a strong magnetic field,
Phys. Rev. B 70, 195334 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.195334
[48] A. Matulis and E. Anisimovas, Quantum dot properties in a
strong magnetic field, Acta Phys. Pol. A 105, 529 (2004),
http://przyrbwn.icm.edu.pl/APP/ABSTR/105/a105-6-529.html
[49] P.A. Maksym, Eckardt frame theory of interacting electrons in
quantum dots, Phys. Rev. B 53, 10871 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.10871
[50] A. Radzvilavičius and E. Anisimovas, Configurational entropy of
Wigner clusters, J. Phys. Condens. Matter 23(7), 075302
(2011),
http://dx.doi.org/10.1088/0953-8984/23/7/075302
[51] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes: the Art of Scientific Computing, 3rd ed.
(Cambridge University Press, Cambridge, 2007),
http://www.cambridge.org/gb/knowledge/isbn/item1174754/
[52] D.P. Landau and K. Binder, A Guide to Monte Carlo
Simulations in Statistical Physics, 3rd ed. (Cambridge
University Press, Cambridge, 2009),
http://www.cambridge.org/gb/knowledge/isbn/item2428116/
[53] J.R. Morris, D.M. Deaven, and K.M. Ho, Genetic-algorithm energy
minimization for point charges on a sphere, Phys. Rev. B 53,
1740 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.R1740
[54] V.M. Bedanov and F.M. Peeters, Ordering and phase transitions
of charged particles in a classical finite two-dimensional system,
Phys. Rev. B 49, 2667 (1994),
http://dx.doi.org/10.1103/PhysRevB.49.2667
[55] C. Henning, K. Fujioka, P. Ludwig, A. Piel, A. Melzer, and M.
Bonitz, Existence and vanishing of the breathing mode in strongly
correlated finite systems, Phys. Rev. Lett. 101, 045002
(2008),
http://dx.doi.org/10.1103/PhysRevLett.101.045002
[56] A. Matulis, D. Jarema, and E. Anisimovas, A quasiclassical
approach to strongly correlated quantum dots, Central Eur. J. Phys.
7, 704 (2009),
http://dx.doi.org/10.2478/s11534-008-0157-3
[57] M. Hase, M. Kitajima, A.M. Constantinescu, and H. Petek, The
birth of quasiparticles in Si observed in time-frequency space,
Nature 426, 51 (2003),
http://dx.doi.org/10.1038/nature02044
[58] U. Weiss, Quantum Dissipative Systems, Series in Modern
Condensed Matter Physics Vol. 13, 3rd ed. (World Scientific,
Singapore, 2008),
http://dx.doi.org/10.1142/9789812791795
[59] E. Anisimovas and A. Matulis, Schrödinger-equation formalism
for a dissipative quantum system, Phys. Rev. A 75, 022104
(2007),
http://dx.doi.org/10.1103/PhysRevA.75.022104
[60] A. Matulis and E. Anisimovas, Dissipation in a
Schrödinger-equation formalism, Physica E 40, 1520 (2008),
http://dx.doi.org/10.1016/j.physe.2007.09.167
[61] A. Matulis and E. Anisimovas, Dissipation in a
quantum-mechanical system, Opt. Mater. 30, 730 (2008),
http://dx.doi.org/10.1016/j.optmat.2007.02.022
[62] W. Boucher and J. Traschen, Semiclassical physics and quantum
fluctuations, Phys. Rev. D 37, 3522 (1988),
http://dx.doi.org/10.1103/PhysRevD.37.3522
[63] Z.L. Ye and E. Zaremba, Magnetoplasma excitations in anharmonic
electron dots, Phys. Rev. B 50, 17217 (1994),
http://dx.doi.org/10.1103/PhysRevB.50.17217
[64] B. Partoens, A. Matulis, and F.M. Peeters, Magnetoplasma
excitations of two vertically coupled dots, Phys. Rev. B 57,
13039 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.13039
[65] E. Anisimovas and F.M. Peeters, Dynamic response of artificial
bipolar molecules, Phys. Rev. B 66, 075311 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.075311