[PDF]
http://dx.doi.org/10.3952/lithjphys.50411
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 50, 419–426 (2010)
APPLICATION OF SEMICONDUCTOR
DETECTOR FOR RECORDING THE RAYLEIGH SCATTERING OF MÖSSBAUER
RADIATION
J. Reklaitis, D. Baltrūnas, V. Remeikis, and K. Mažeika
State Research Institute Center for Physical Sciences and
Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: dalis@ar.fi.lt
Received 8 October 2010; revised 23
November 2010; accepted 15 December 2010
The method of the Rayleigh
scattering of Mössbauer radiation (RSMR) for the study of dynamics
of atoms in polystyrene demonstrating advantages of the
application of the semiconductor Si-PIN detector (Amptek Inc.) was
used for recording scattered radiation. It has been shown that for
recording the RSMR spectra the semiconductor detector can be much
more suitable than other types of detection because of the
increased quality of spectra under the same collimating
conditions. The dependence of probability of the Rayleigh elastic
scattering
fR on the scattering angle was
obtained. By means of the RSMR method the scattering was studied
within the angle range at the main Bragg maximum of a polystyrene
sample which corresponds to the distance
d = 4.44
approximately equal to the distance between the polymer chains.
Keywords: Mössbauer spectroscopy,
Rayleigh scattering, detector, dynamics of atoms
PACS: 76.80.+y; 29.40.-n
PUSLAIDININKINIO DETEKTORIAUS
PANAUDOJIMAS MESBAUERIO SPINDULIUOTĖS RELĖJAUS SKLAIDAI
REGISTRUOTI
J. Reklaitis, D. Baltrūnas, V. Remeikis, K. Mažeika
Valstybinis mokslinių tyrimų institutas Fizinių ir
technologijos mokslų centras, Vilnius, Lietuva
Mesbauerio spinduliuotės Relėjaus sklaidos
metodas pritaikytas atomų dinamikos polistirene tyrimui,
išsklaidytos spinduliuotės registracijai, pasirenkant
puslaidininkinį Si-PIN detektorių. Puslaidininkinis detektorius,
palyginus su dažniausiai naudojamu proporcingu detektoriumi,
pasižymi daug geresne energine skiriamąja geba ir juo galima gauti
geresnės kokybės Mesbauerio spinduliuotės Relėjaus sklaidos
spektrus esant toms pačioms kolimavimo sąlygoms. Gauta Relėjaus
elastinės sklaidos polistirene tikimybės fR priklausomybė nuo
sklaidos kampo. Mesbauerio spinduliuotės Relėjaus sklaidos metodas
taikytas esant sklaidos kampams intensyvumo maksimume, kuris
atitinka vidutinį tarpplokštuminį atstumą
d = 4,44
ir gali
būti siejamas su atstumu tarp polimero grandinių polistirene.
References / Nuorodos
[1] F.G. Parak, Physical aspects of protein dynamics, Rep. Prog.
Phys. 66, 103 (2003),
http://dx.doi.org/10.1088/0034-4885/66/2/201
[2] J.W. Taraska, M.C. Puljung, N.B. Olivier, G.E. Flynn, and W.N.
Zagotta, Mapping the structure and conformational movements of
proteins with transition metal ion FRET, Nature Methods 6,
532 (2009),
http://dx.doi.org/10.1038/nmeth.1341
[3] L. Valkunas, J. Janusonis, D. Rutkauskas, and R. van Grondelle,
Protein dynamics revealed in the excitonic spectra of single LH2
complexes, J. Luminesc. 127, 269–275 (2007),
http://dx.doi.org/10.1016/j.jlumin.2007.02.032
[4] Yu.F. Krupyanskii, V.I. Goldanskii, G.U. Nienhaus, and F.G.
Parak, Dynamics of protein-water systems revealed by Rayleigh
scattering of Moessbauer radiation. Hyperfine Interact. 53,
59–74 (1990),
http://dx.doi.org/10.1007/BF02101039
[5] D.C. Champeney, The scattering of Mössbauer radiation by
condensed matter, Rep. Prog. Phys. 42, 1017–1053 (1979),
http://dx.doi.org/10.1088/0034-4885/42/6/002
[6] C.N.W. Darlington and D.A. O’Connor, On the crystal dynamics of
BaTiO3 near Tc, Phys. Status Solidi A
96, 509 (1986),
http://dx.doi.org/10.1002/pssa.2210960217
[7] V.I. Goldanskii and Yu.F. Krupyanskii, Protein and protein-bound
water dynamics studied by RSMR, Quart. Rev. Biophys. 22,
39–92 (1989),
http://dx.doi.org/10.1017/S003358350000336X
[8] Yu.F. Krupyanskii and V.I. Goldanskii, RSMR comparison of
dynamic properties of various proteins, in: Protein Folding,
Evolution and Design, Proceedings of the International School
of Physics “Enrico Fermi” Course CXLV, eds. R.A. Broglia and I.
Shakhnovich (IOS Press, Amsterdam, 2001) pp. 25–37,
http://www.iospress.nl/book/protein-folding-evolution-and-design/
[9] G. Albanese and A. Deriu, Influance of low frequency excitations
of the Rayleigh scattering of Mössbauer radiation, Phys. Status
Solidi B 107, K115 (1981),
http://dx.doi.org/10.1002/pssb.2221070254
[10] G. Albanese, M.G. Bridelli, and A. Deriu, Structural dynamics
of melanin investigated by Rayleigh scattering of Mössbauer
radiation, Biopolymers 23, 1481 (1984),
http://dx.doi.org/10.1002/bip.360230805
[11] C. Tzara and R. Barloutaud, Recoiless Rayleigh scattering in
solids, Phys. Rev. Lett. 4, 405 (1960),
http://dx.doi.org/10.1103/PhysRevLett.4.405
[12] A. Jagminas, R. Ragalevičius, K. Mažeika, J. Reklaitis, V.
Jasulaitienė, A. Selskis, and D. Baltrūnas, A new strategy for
fabrication Fe2O3/SiO2 composite
coatings on the Ti substrate, J. Solid State Electrochem. 14,
271 (2010),
http://dx.doi.org/10.1007/s10008-009-0820-7
[13] A. Jagminas, K. Mažeika, E. Juška, J. Reklaitis, and D.
Baltrūnas, Electrochemical fabrication and characterization of
lepidocrocite (-FeOOH)
nanowire arrays, Appl. Surf. Sci. 256, 3993–3996 (2010),
http://dx.doi.org/10.1016/j.apsusc.2010.01.064
[14] A. Jagminas, K. Mažeika, J. Reklaitis, M. Kurtinaitiene, and D.
Baltrunas, Template synthesis, characterization and transformations
of iron nanowires while aging, Mater. Chem. Phys. 109, 82–86
(2008),
http://dx.doi.org/10.1016/j.matchemphys.2007.10.036
[15] A. Amulevicius, D. Baltrunas, V. Bendikiene, A. Daugvila, R.
Davidonis, and K. Mazeika, Investigation of the magnetic properties
of nanocrystalline Fe3O4 precipitated on the
surface of chitin, Phys. Status Solidi A 189, 243–252
(2002),
http://dx.doi.org/10.1002/1521-396X(200201)189:1<243::AID-PSSA243>3.0.CO;2-Y
[16] Yu.M. Vysochanskii, D. Baltrunas, A.A. Grabar, K. Mazeika, K.
Fedyo, and A. Sudavicius, 119Sn and XPS spectroscopy of
Sn2P2S6 and SnP2S6
crystals, Phys. Status Solidi B 246, 1110–1117 (2009),
http://dx.doi.org/10.1002/pssb.200844316
[17] V.V. Remeikis, A.K. Dragunas, K.V. Makariunas, and B.P.
Ruziale, Change of the electron-capture probability-positron Ga-68
decay probability ratio in chemical compounds, Izv. Akad. Nauk SSSR
Ser. Phys. 52, 2–4 (1988) [in Russian]
[18] S.E. Enescu and I. Bibicu, Rayleigh scattering of Mössbauer
radiation method used in dynamics studies of condensed matter, Acta
Phys. Pol. A 107, 479 (2005),
http://przyrbwn.icm.edu.pl/APP/ABSTR/107/a107-3-5.html
[19] A. Deriu, F. Cavatorta, and G. Albanese, Rayleigh scattering of
Mössbauer radiation in hydrated amylase, Hyperfine Interact. 141/142,
261 (2002),
http://dx.doi.org/10.1023/A:1021295711441
[20] S.E. Enescu, I. Bibicu, V. Zoran, A. Kluger, A.D. Stoica, and
V. Tripadus, A PC-based set-up for Rayleigh scattering of Mössbauer
radiation, Measur. Sci. Technol. 9, 708 (1998),
http://dx.doi.org/10.1088/0957-0233/9/4/021
[21] F.G. Parak, K. Achterhold, M. Schmidt, V. Prusakov, and S.
Croci, Protein dynamics on different timescales, J. Non-Cryst.
Solids 352, 4371 (2006),
http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.106
[22] K.S. Singwi and A. Sjolander, Resonance absorbtion of nuclear
gamma rays and the dynamics of atomic motion, Phys. Rev. 120,
1093 (1960),
http://dx.doi.org/10.1103/PhysRev.120.1093
[23] V.N. Gavrilov, E.V. Zolotojabko, and E.M. Iolin, Line
broadening effect in the Rayleigh scattering of Mössbauer radiation
on single crystals. Phys. Lett. A 75, 429 (1980),
http://dx.doi.org/10.1016/0375-9601(80)90864-6
[24] Yu.F. Krupyanskii, S.V. Esin, G.V. Eshenko, and M.G.
Michailyuk, Spatio-temporal features of protein specific motions.
The influence of hydration, J. Biol. Phys. 28, 139–145
(2002),
http://dx.doi.org/10.1023/A:1019934304686
[25] Yu.F. Krupyanskii, S.V. Esin, G.V. Eshenko, and M.G.
Michailyuk, Equilibrium fluctuations in lysozyme and myoglobin,
Hyperfine Interact. 141–142, 273–277 (2002),
http://dx.doi.org/10.1023/A:1021203414531
[26] S.K. Basovets, I.V. Uporov, K.V. Shaitan, Yu.F. Krupyanskii,
I.V. Kurinov, I.P. Suzdalev, A.B. Rubin, and V.I. Goldanskii, A
method of Mössbauer Fourier spectroscopy for determination of the
biopolimer coordinate correlation functions, Hyperfine Interact. 39,
369 (1988),
http://dx.doi.org/10.1007/BF02397646
[27] E.W. Knapp, S.F. Fischer, and F. Parak, Protein dynamics from
Mössbauer spectra. The temperature dependance, J. Phys. Chem. 86,
5042 (1982),
http://dx.doi.org/10.1021/j100223a002
[28] G.U. Nienhaus, F. Drepper, F. Parak, R.L. Mössbauer, D. Bade,
and W. Hoppe, A multiwire proportional counter with spherical drift
chamber for protein crystallography with X-rays and gamma-rays,
Nucl. Instrum. Methods A 256, 581 (1987),
http://dx.doi.org/10.1016/0168-9002(87)90305-6
[29] G.U. Nienhaus and F. Parak, Rayleigh scattering of Mössbauer
radiation on met-myoglobin, Hyperfine Interact. 29, 1451
(1986),
http://dx.doi.org/10.1007/BF02399508
[30] C. Zach, C. Keppler, E. Huenges, K. Achterhold, and F. Parak,
Angular- and temperature-dependent RSMR on myoglobin using 183W
and 57Fe, Hyperfine Interact. 126, 83 (2000),
http://dx.doi.org/10.1023/A:1012607804111
[31] I.P. Suzdalev, Yu.F. Krupyanskii, and V.I. Goldanskii,
Electronic state of the iron atom in heme and protein molecular
motion studied by Mössbauer spectroscopy, J. Mol. Catal. 47,
179 (1988),
http://dx.doi.org/10.1016/0304-5102(88)85041-7
[32] Yi-Long Chen and De-Ping Yang, Mössbauer Effect in Lattice
Dynamics: Experimental Techniques and Applications (Wiley–VCH,
Weinheim, 2007),
http://dx.doi.org/10.1002/9783527611423