[PDF]   
    http://dx.doi.org/10.3952/lithjphys.51101
    
    Open access article / Atviros prieigos straipsnis
    
    Lith. J. Phys. 51, 5–18 (2011)
    
    AN EXPLICIT BASIS OF LOWERING
        OPERATORS FOR IRREDUCIBLE REPRESENTATIONS OF UNITARY GROUPS
      D.S. Sage and L. Smolinsky
      Department of Mathematics, Louisiana State University, Baton
        Rouge, LA 70803, USA
      E-mail: sage@math.lsu.edu, smolinsk@math.lsu.edu
    
    
    Received 2 July 2010; revised 13
      December 2010; accepted 15 December 2010
    
    
    The representation theory of the
      unitary groups is of fundamental significance in many areas of
      physics and chemistry. In order to label states in a physical
      system with unitary symmetry, it is necessary to have explicit
      bases for the irreducible representations. One systematic way of
      obtaining bases is to generalize the ladder operator approach to
      the representations of SU(2) by using the formalism of lowering
      operators. Here, one identifies a basis for the algebra of all
      lowering operators and, for each irreducible representation, gives
      a prescription for choosing a subcollection of lowering operators
      that yields a basis upon application to the highest weight vector.
      Bases obtained through lowering operators are particularly
      convenient for computing matrix coefficients of observables as the
      calculations reduce to the commutation relations for the standard
      matrix units. The best known examples of this approach are the
      extremal projector construction of the Gelfand–Zetlin basis and
      the crystal (or canonical) bases of Kashiwara and Lusztig. In this
      paper, we describe another simple method of obtaining bases for
      the irreducible representations via lowering operators. These
      bases do not have the algebraic canonicity of the Gelfand–Zetlin
      and crystal bases, but the combinatorics involved are much more
      straightforward, making the bases particularly suited for physical
      applications.
    
    Keywords: unitary group, special unitary
      group, irreducible representations, lowering operators, spin-free
      quantum chemistry, many-body problem
    
    PACS: 02.20.-a, 31.15.xh
    
    ŽEMINANČIŲJŲ OPERATORIŲ, SKIRTŲ
        UNITARINIŲ GRUPIŲ NEREDUKUOTINIAMS ATVAIZDAMS, IŠREIKŠTINĖ BAZĖ
      D.S. Sage, L. Smolinsky
      Luizianos valstijos universitetas, Baton Ružas, JAV
      
    
    Unitarinių grupių atvaizdų teorija
      fundamentaliai svarbi daugelyje fizikos ir chemijos sričių.
      Unitarinės simetrijos fizikinės sistemos būsenų žymėjimui reikia
      turėti išreikštines bazes neredukuotiniams atvaizdams. Vienas
      sisteminių būdų gauti bazes yra apibendrinti laiptinių operatorių
      metodą SU(2) atvaizdams, panaudojant žeminančiųjų operatorių
      formalizmą. Čia nustatoma bazė visų žeminančiųjų operatorių
      algebrai ir kiekvienam neredukuotiniam atvaizdui pateikiama
      instrukcija, kaip parinkti žeminančiųjų operatorių rinkinio dalį,
      kurią naudojant bazė gaunama iš didžiausio svorio vektoriaus.
      Bazės, gautos žeminančiaisiais operatoriais, ypač patogios
      skaičiuojant stebimų dydžių matricinius koeficientus, kadangi jie
      virsta komutacijos sąryšiais standartiniams matriciniams
      vienetams. Žinomiausi šito metodo pavyzdžiai yra Gelfando ir
      Cetlino bazės sukonstravimas naudojant kraštutinius projektorius
      bei kristalinės (arba kanoninės) Kašivaros ir Lustigo bazės.
      Straipsnyje aprašomas kitas paprastas būdas gauti neredukuotinių
      atvaizdų bazes naudojant žeminančiuosius operatorius. Šios bazės
      nepasižymi Gelfando ir Cetlino ar kristalinių bazių kanoniškumu,
      tačiau kombinatorika, su kuria susiduriama, yra daug paprastesnė
      ir dėl to šios bazės ypač tinka fizikiniams taikymams.
    
    
      References / Nuorodos
    
    [1] L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum
      Physics (Addison-Wesley, Reading, 1981), 
    http://www.amazon.com/Angular-Momentum-Quantum-Physics-Application/dp/0201135078
    [2] A. Arima, Elliott’s SU(3) model and its developments in nuclear
    physics, J. Phys. G 25, 581–588 (1999), 
    
      http://dx.doi.org/10.1088/0954-3899/25/4/003
    [3] J.P. Elliott, Collective motion in the nuclear shell model I.
    Classification schemes for states of mixed configurations, Proc. R.
    Soc. London Ser. A 245, 128–145 (1958), 
    
      http://dx.doi.org/10.1098/rspa.1958.0072
    [4] J.P. Elliott, Collective motion in the nuclear shell model II.
    The introduction of intrinsic wave-functions, Proc. R. Soc. London
    Ser. A 245, 562–581 (1958), 
    
      http://dx.doi.org/10.1098/rspa.1958.0101
    [5] H. Georgi, Lie Algebras in Particle Physics, 2nd ed.
    (Perseus Books, Reading, 1999), 
    http://www.amazon.co.uk/Lie-Algebras-Particle-Physics-Frontiers/dp/0738202339/
    [6] M. Moshinsky, Group Theory and the Many-Body Problem
    (Gordon and Breach, New York, 1968), 
    http://www.amazon.co.uk/Theory-Problem-Documents-Modern-Physics/dp/0677017405/
    [7] J. Paldus, Unitary group approach to many-electron correlation
    problem, in: The Unitary Group, Lecture Notes in Chemistry,
    Vol. 22 (Springer-Verlag, New York, 1981) pp. 1–50, 
    http://www.amazon.co.uk/Unitary-Evaluation-Electronic-Energy-Elements/dp/3540102876/
    [8] The Unitary Group, ed. J. Hinze, Lecture Notes in
    Chemistry, Vol. 22 (Springer-Verlag, New York, 1981), 
    http://www.amazon.co.uk/Unitary-Evaluation-Electronic-Energy-Elements/dp/3540102876/
    [9] F.A. Matsen and R. Pauncz, The Unitary Group in Quantum
      Chemistry (Elsevier, Amsterdam, 1986), 
    http://www.amazon.com/Unitary-Quantum-Chemistry-Physical-Theoretical/dp/0444427309/
    [10] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States:
      An Introduction to Quantum Entanglement (Cambridge University
    Press, Cambridge, 2008), 
    http://www.amazon.com/Geometry-Quantum-States-Introduction-Entanglement/dp/052189140X/
    [11] D. Uskov and A.R.P. Rau, Geometric phases and Bloch-sphere
    constructions for SU(N) groups with a complete description of
    the SU(4) group, Phys. Rev. A 78, 022331 (2008), 
    
      http://dx.doi.org/10.1103/PhysRevA.78.022331
    [12] M. Moshinsky, Bases for the irreducible representations of the
    unitary groups and some applications, J. Math. Phys. 4,
    1128–1139 (1963), 
    http://dx.doi.org/10.1063/1.1704043
    [13] F.A. Matsen, Scientific reminiscences, Int. J. Quant. Chem. 41,
    7–14 (1992), 
    
      http://dx.doi.org/10.1002/qua.560410105
    [14] I. Schur, Über die rationalen Darstellungen der allgemeinen
    linearen Gruppe, 1927, in: I. Schur, Gesammelte Abhandlungen III
    (Springer, Berlin, 1973) pp. 68–85, 
    http://www.amazon.com/Gesammelte-Abhandlungen-Issai-Schur/dp/0387056300/
    [15] H. Weyl, The Classical Groups (Princeton University
    Press, Princeton, NJ, 1997), 
    http://www.amazon.com/Classical-Groups-Their-Invariants-Representations/dp/0691057567/
    [16] H.Weyl, The Theory of Groups and Quantum Mechanics
    (Dutton, New York, 1931), 
    http://www.amazon.com/Theory-Groups-Quantum-Mechanics-Hermann/dp/B001THPJ2C/
    [17] J.G. Nagel and M. Moshinsky, Operators that lower or raise the
    irreducible vector spaces of Un−1 contained in an
    irreducible vector space of Un, J. Math. Phys. 6,
    682–694 (1965), 
    
      http://dx.doi.org/10.1063/1.1704326
    [18] R.M. Asherova, Yu.F. Smirnov, and V.N. Tolstoi, Projection
    operators for simple Lie groups, Teoret. Mat. Fiz. 8,
    255–271 (1971) [in Russian; English translation: Theoret. Math.
    Phys. 8, 813–825 (1971)], 
    
      http://dx.doi.org/10.1007/BF01038003
    [19] R.M. Asherova, Yu.F. Smirnov, and V.N. Tolstoi, Projection
    operators for simple Lie groups II. General scheme for constructing
    lowering operators. The groups SU(n), Teoret. Mat.
    Fiz. 15, 107–119 (1973) [in Russian; English translation:
    Theoret. Math. Phys. 15, 392–401 (1973)], 
    
      http://dx.doi.org/10.1007/BF01028268
    [20] D.P. Zhelobenko, Extremal projectors and generalized Mickelsson
    algebras on reductive Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 52,
    758–773, 895 (1988) [in Russian; English translation: Math. USSR
    Izv. 33, 85–100 (1989), 
    
      http://dx.doi.org/10.1070/IM1989v033n01ABEH000815
    [21] S. Khoroshkin and O. Ogievetsky, Mickelsson algebras and
    Zhelobenko operators, J. Algebra 319, 2113–2165 (2008), 
    
      http://dx.doi.org/10.1016/j.jalgebra.2007.04.020
    [22] J. Mickelsson, Step algebras of semi-simple subalgebras of Lie
    algebras, Rep. Math. Phys. 4, 307–318 (1973), 
    
      http://dx.doi.org/10.1016/0034-4877(73)90006-2
    [23] D.P. Zhelobenko, S-algebras and Verma modules over reductive
    Lie algebras, Soviet Math. Dokl. 28, 696–700 (1983)
    [24] A.I. Molev, Gelfand–Tsetlin bases for classical Lie algebras,
    in: Handbook of Algebra, Vol. 4, ed. M. Hazewinkel
    (Elsevier, 2006) pp. 109–170, 
    http://www.elsevier.com/books/handbook-of-algebra/hazewinkel/978-0-444-52213-9#description
    [25] A.I. Molev, Weight bases of Gelfand–Tsetlin type for
    representations of classical Lie algebras, J. Phys. A 33,
    4143–4168 (2000), 
    
      http://dx.doi.org/10.1088/0305-4470/33/22/316
    [26] V.N. Tolstoy, Extremal projectors for quantized Kac–Moody
    superalgebras and some of their applications, in: Quantum Groups,
    eds. H.D. Doebner and J.D. Hennig, Lecture Notes in Physics, Vol.
    370 (Springer, Berlin, 1990) pp. 118–125, 
    
      http://dx.doi.org/10.1007/3-540-53503-9_45
    [27] V.N. Tolstoy, Projection operator method for quantum groups,
    in: Special Functions 2000, NATO Science Series II, Vol. 30
    (Kluwer Acad. Publ., The Netherlands, 2001) pp. 457–488, 
    http://www.springer.com/mathematics/analysis/book/978-0-7923-7120-5
    [28] A.I. Molev, Gelfand–Tsetlin basis for Yangians, Lett. Math.
    Phys. 30, 53–60 (1994), 
    
      http://dx.doi.org/10.1007/BF00761422
    [29] A. Klimyk and K. Schmüdgen, Quantum Groups and Their
      Representations, Texts and Monographs in Physics
    (Springer-Verlag, Berlin, 1997), 
    http://www.amazon.co.uk/Quantum-Groups-Representations-Monographs-Physics/dp/3540634525/
    [30] K. Ueno, T. Takebayashi, and Y. Shibukawa, Construction of
    Gel’fand–Zetlin basis for Uq(gl(N +
    1)) modules, Publ. RIMS Kyoto Univ. 26, 667–679 (1990), 
    
      http://dx.doi.org/10.2977/prims/1195170852
    [31] V.N. Tolstoy, Fortieth anniversary of extremal projector method
    for Lie symmetries, in: Noncommutative Geometry and
      Representation Theory in Mathematical Physics, eds. J. Fuchs,
    J. Mickelsson, G. Rozenblioum, A. Stolin, and A. Westerberg,
    Contemporary Mathematics, Vol. 391 (American Mathematical Society,
    2005) p. 371–384 (2005), 
    http://www.ams.org/bookstore?fn=20&arg1=mathphys&ikey=CONM-391
    [32] M.E. Taylor, Noncommutative Harmonic Analysis (American
    Mathematical Society, Providence, 1986), 
    http://www.amazon.co.uk/Noncommutative-Harmonic-Analysis-Mathematical-Monographs/dp/0821815237/
    [33] D.P. Zelobenko, Compact Lie Groups and Their
      Representations (American Mathematical Society, Providence,
    1973), 
    http://www.amazon.co.uk/Compact-Lie-Groups-Their-Representations/dp/0821815903/
    [34] W. Fulton and J. Harris, Representation Theory: A First
      Course (Springer-Verlag, New York, 1991), 
    http://www.amazon.co.uk/Representation-Theory-Course-Graduate-Mathematics/dp/3540974954/
    [35] M. Kashiwara, On crystal bases of the q-analogue of
    universal enveloping algebras, Duke Math. J. 63, 465–516
    (1991), 
    
      http://dx.doi.org/10.1215/S0012-7094-91-06321-0
    [36] G. Lusztig, Canonical bases arising from quantized enveloping
    algebras, J. Am. Math. Soc. 2, 447–498 (1990), 
    
      http://dx.doi.org/10.1090/S0894-0347-1990-1035415-6
    [37] J. Hong and H. Lee, Young tableaux and crystal B() for
    finite simple Lie algebras, J. Algebra 320, 3680–3693
    (2008), 
    
      http://dx.doi.org/10.1016/j.jalgebra.2008.06.008
    [38] B. Leclerc and P. Toffin, A simple algorithm for computing the
    global crystal basis of an irreducible Uq(sln)-module,
    Int. J. Algebra Comput. 10, 191–208 (2000), 
    
      http://dx.doi.org/10.1142/S0218196700000042
    [39] H. Lee, Nakajima monomials and crystals for special linear Lie
    algebras, Nagoya Math. J. 188, 31–57 (2007), 
    
      http://projecteuclid.org/euclid.nmj/1197908743
    [40] J. Paldus and C.R. Sarma, Clifford algebra unitary group
    approach to many-electron correlation problem, J. Chem. Phys. 83,
    5135–5152 (1985), 
    
      http://dx.doi.org/10.1063/1.449726
    [41] F.A. Matsen, Spin-free quantum chemistry. XXIII. The
    generator-state approach, Int. J. Quantum Chem. 32, 71–86
    (1987), 
    
      http://dx.doi.org/10.1002/qua.560320108
    [42] D.J. Rowe, Properties of overcomplete and nonorthogonal basis
    vectors, J. Math. Phys. 10, 1774–1777 (1969), 
    
      http://dx.doi.org/10.1063/1.1665026
    [43] P.O. Löwdin, Quantum theory of cohesive properties of solids,
    Adv. Phys. 5, 1–172 (1956), 
    
      http://dx.doi.org/10.1080/00018735600101155
    [44] R.W. Carter and G. Lusztig, On the modular representations of
    the general linear and symmetric groups, Math. Z. 136,
    193–242 (1974), 
    
      http://dx.doi.org/10.1007/BF01214125
    [45] J.E. Humphreys, Introduction to Lie Algebras and
      Representation Theory (Springer-Verlag, New York, 1972, 
    http://www.amazon.com/Introduction-Algebras-Representation-Graduate-Mathematics/dp/0387900535
    [46] F.A. Matsen, Canonical generator states and their symmetry
    adaptation, Int. J. Quant. Chem. 18, 43–56 (1984), 
    
      http://dx.doi.org/10.1002/qua.560260808
    [47] K. Akin, D. Buchsbaum, and J. Weyman, Schur functors and Schur
    complexes, Adv. Math. 44, 207–278 (1982), 
    
      http://dx.doi.org/10.1016/0001-8708(82)90039-1
    [48] B.E. Sagan, The Symmetric Group, 2nd ed.
    (Springer-Verlag, New York, 2001), 
    http://www.springer.com/mathematics/algebra/book/978-0-387-95067-9