[PDF]    http://dx.doi.org/10.3952/lithjphys.51103

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 29–37 (2011)

INVESTIGATIONS OF INTERMOLECULAR INTERACTIONS BETWEEN 2-METHOXYETHANOL AND NITROBENZENE THROUGH DIELECTRIC RELAXATION STUDY
S.B. Sayyad a, P.B. Undre b, P. Yannewar c, S.S. Patil b, P.W. Khirade b, and S.C. Mehrotra c
a Milliya Arts, Science and Management Science College, Beed–431 122, India
b Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabd–431 004, India
E-mail: prabhakarundre@yahoo.co.in
c Department of Computer Science and IT, Dr. Babasaheb Ambedkar Marathwada University, Aurangabd–431 004, India

Received 30 July 2010; revised 6 December 2010; accepted 15 December 2010

Complex dielectric spectra ε\varepsilon*(ω\omega) = ε{\varepsilon}^{\prime} – iε{\varepsilon}^{\prime\prime} of binary mixture of 2-methoxyethanol with nitrobenzene were obtained in the frequency range of 10 MHz to 20 GHz over the volume fraction range 0 < vv < 1 and at different temperatures of 288, 298, 308, and 318 K using the time domain reflectometry (TDR) technique. The static dielectric constant εs{\varepsilon}_{\mathrm{s}} and relaxation time τ\tau have been obtained. These values are used to obtain the excess permittivity εsE{\varepsilon}_{\mathrm{s}}^{\mathrm{E}}, excess inverse relaxation time (1/τ)E(1/\tau)^{\mathrm{E}}, Kirkwood correlation factor geffg^{\mathrm{eff}}, Bruggeman factor fB, and thermodynamic parameters. On the basis of above parameters, intermolecular interaction and dynamics of molecules at molecular level are predicated.
Keywords: dielectric relaxation, excess parameters, Kirkwood correlation factor, thermodynamic parameters, time domain reflectometry
PACS: 77.22.Ch, 77.22.Gm, 77.84.Nh

TARPMOLEKULINIŲ 2-METOKSIETANOLIO IR NITROBENZENO SĄVEIKŲ TYRIMAS, MATUOJANT DIELEKTRINĘ RELAKSACIJĄ
S.B. Sayyad a, P.B. Undre b, P. Yannewar c, S.S. Patil b, P.W. Khirade b, S.C. Mehrotra c
Swami Ramanand Teerth Marathwada universitetas, Nandedas, Maharaštra, Indija

Dvinario 2-metoksietanolio ir nitrobenzeno mišinio kompleksiniai spektrai ε\varepsilon*(ω\omega) = ε{\varepsilon}^{\prime} – iε{\varepsilon}^{\prime\prime} gauti 0 < vv < 1 tūrio daliai dažnių srityje nuo 10 MHz iki 20 GHz 288, 298, 308 ir 318 K temperatūroje, naudojant laikinę reflektometriją. Gautos statinė dielektrinė konstanta εs{\varepsilon}_{\mathrm{s}} ir relaksacijos trukmė τ. Šios vertės naudojamos viršijančiajai skvarbai εsE{\varepsilon}_{\mathrm{s}}^{\mathrm{E}}, viršijančiajai atvirkštinei relaksacijos trukmei (1/τ)E(1/\tau)^{\mathrm{E}}, Kirkvudo koreliacijos koeficientui geffg^{\mathrm{eff}}, Brugemano koeficientui fB ir termodinaminiams parametrams nustatyti. Remiantis gautais parametrais, molekuliniu lygmeniu aiškinama tarpmolekulinė sąveika ir molekulių dinamika.

References / Nuorodos


[1] A.C. Kumbharkhane, S.N. Helambe, M.P. Lokhande, S. Doraiswamy, and S.C. Mehrotra, Pramana J. Phys. 46(2), 91 (1996),
http://dx.doi.org/10.1007/BF02848226
[2] M.P. Lokhande, S. Mazumdar, and S.C. Mehrotra, Ind. J. Biochem. Biophys. 34, 385 (1997)
[3] E.N. Tsurko, T.M. Shihova, and N.V. Bondarev, J. Mol. Liq. 96–97, 425 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00364-6
[4] A.C. Kumbharkhane, S.N. Helambe, S. Doraiswamy, and S.C. Mehrotra, J. Chem. Phys. 99(3), 1 (1993),
http://dx.doi.org/10.1063/1.465255
[5] R.L. Smith, C. Saito, S. Suzuki, S.-B. Lee, H. Inomata, and K. Arai, Fluid Phase Equilib. 194–197, 869 (2002),
http://dx.doi.org/10.1016/S0378-3812(01)00714-2
[6] L. Woniok and M. Stockhausen, J. Mol. Liq. 38, 135 (1988),
http://dx.doi.org/10.1016/0167-7322(88)80012-6
[7] D.V. Jahagirdar, B.R. Arbad, M.P. Lokhande, and S.C. Mehrotra, Ind. J. Chem. A 34, 462 (1995)
[8] R. Buchner, G.T. Hefter, and P.M. May, J. Phys. Chem. A 103(1), 1 (1999),
http://dx.doi.org/10.1021/jp982977k
[9] Yan-Zhen Wei and S. Sridhar, J. Chem. Phys. 92(2), 923 (1990),
http://dx.doi.org/10.1063/1.458074
[10] V. Satheesh, M. Jeyaraj, and J. Sobhandri, J. Mol. Liq. 64, 247 (1995),
http://dx.doi.org/10.1016/0167-7322(95)00812-O
[11] Ajay Chaudhari and S.C. Mehrotra, Mol. Phys. 100(24), 3907 (2003),
http://dx.doi.org/10.1080/0026897021000023668
[12] M.T. Hosamani, R.H. Fattepur, D.K. Deshpande, and S.C. Mehrotra, J. Chem. Soc. Faraday Trans. 91, 1 (1995),
http://dx.doi.org/10.1039/ft9959100623
[13] S.N. Helambe, M.P. Lokhande, A.C. Kumbharkhane, S.C. Mehrotra, and S. Doraiswamy, Pramana J. Phys. 44(5), 405 (1995),
http://dx.doi.org/10.1007/BF02848492
[14] V.P. Pawar and S.C. Mehrotra, J. Mol. Liq. 95, 63 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00282-3
[15] Akl M. Awwad, Amar H. Al-Dujaili, and Salim R. Syriagh, J. Mol. Liq. 100(2), 129 (2002),
http://dx.doi.org/10.1016/S0167-7322(02)00018-1
[16] R. Sampathkumar, R. Sadesan, and S. Krishnan, J. Mol. Liq. 95, 183 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00277-X
[17] S. Sampathkumar, R. Sobesan, and S. Krishnan, J. Mol. Liq. 95, 41 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00285-9
[18] T. Ganesh, D. Balamurugan, R. Sabesan, and S. Krishnan, J. Mol. Liq. 123, 80 (2006),
http://dx.doi.org/10.1016/j.molliq.2005.05.005
[19] G. Moumouzia, D.K. Panopoulos, and G. Ritzoulls, J. Chem. Eng. Data 36, 20 (1991),
http://dx.doi.org/10.1021/je00001a006
[20] S.P. Patil, A.S. Chaudhari, B.R. Arbad, M.R. Landey, and S.C. Mehrotra, J. Chem. Eng. Data 44, 875 (1999),
http://dx.doi.org/10.1021/je980250j
[21] V.A. Rana, A.D. Vyas, and S.C. Mehrotra, J. Mol. Liq. 102(1–3), 379 (2003),
http://dx.doi.org/10.1016/S0167-7322(02)00162-9
[22] S. Ahire, A. Chaudhari, M. Lokhande, and S.C. Mehrotra, J. Solution Chem. 27, 993 (1998),
http://dx.doi.org/10.1016/S0167-7322(02)00162-9
[23] Jianfeg Lou, A.K. Paravastu, P.E. Laibinis, and T.A. Hatton, J. Phys. Chem. A 101, 9892 (1997),
http://dx.doi.org/10.1021/jp972785+
[24] R.H. Cole, J.G. Berbarian, S. Mashimo, G. Chryssikos, A. Burns, and E. Tombari, J. Appl. Phys. 66, 793 (1989),
http://dx.doi.org/10.1063/1.343499
[25] M.J.C. van Gemert, Adv. Mol. Relaxation Processes 6, 123 (1974),
http://dx.doi.org/10.1016/0001-8716(74)80006-4
[26] D. Bertolini, M. Cassettari, S. Salvetti, E. Tombari, and S. Veronesi, Rev. Sci. Instrum. 61, 2416 (1990),
http://dx.doi.org/10.1063/1.1141373
[27] J.G. Berberian and E. King, J. Non-Cryst. Solids 305, 10 (2002),
http://dx.doi.org/10.1016/S0022-3093(02)01082-7
[28] C.E. Shannon, Proc. Inst. Radio Eng. 37, 10 (1949),
http://dx.doi.org/10.1109/JRPROC.1949.232969
[29] H.A. Samulon, Proc. Inst. Radio Eng. 39, 175 (1951),
http://dx.doi.org/10.1109/JRPROC.1951.231438
[30] S. Mashimo, S. Kuwabara, S. Yogihara, and K. Higasi, J. Chem. Phys. 90, 3292 (1989),
http://dx.doi.org/10.1063/1.455883
[31] S. Havriliak and S. Negami, J. Polymer Sci. C 14, 99 (1966),
http://dx.doi.org/10.1002/polc.5070140111
[32] K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941),
http://dx.doi.org/10.1063/1.1750906
[33] D.W. Davidson and R.H. Cole, J. Chem. Phys. 18, 1484 (1950),
http://dx.doi.org/10.1063/1.1747518
[34] P. Debye, Polar Molecules (The Chemical Catalogue Company, New York, 1929)
[35] T. Sato, A. Chiba, and R. Nozaki, J. Mol. Liq. 96–97, 327 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00357-9
[36] S.C. Mehrotra and J.E. Boggs, J. Chem. Phys. 66, 5306 (1977),
http://dx.doi.org/10.1063/1.433913
[37] O. Redlich and A.T. Kister, Ind. Eng. Chem. 40, 345 (1948),
http://dx.doi.org/10.1021/ie50458a036
[38] D.A.G. Bruggeman, Ann. Phys. (Leipzig) 416(7), 636 (1935),
http://dx.doi.org/10.1002/andp.19354160705
[39] H. Eyring, J. Chem. Phys. 4, 283 (1936),
http://dx.doi.org/10.1063/1.1749836
[40] CRC Handbook of Chemistry and Physics, 87th ed., ed. D.R. Lide (CRC Press, 2006),
http://www.amazon.com/gp/reader/0849304873/
[41] G. Oster and J.G. Kirkwood, J. Chem. Phys. 11, 175 (1943),
http://dx.doi.org/10.1063/1.1723823