[PDF]    http://dx.doi.org/10.3952/lithjphys.51104

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 19–24 (2011)

QED CORRECTIONS FOR THE VALENCE ELECTRON IN HEAVY AND SUPER-HEAVY ATOMS
I.A. Goydenko and Yu.Yu. Dmitriev
Department of Physics, St. Petersburg State University, Uljanovskaya 1, Petrodvorets, RU-198904 St. Petersburg, Russia
E-mail: igor_g@landau.phys.spbu.ru

Received 22 September 2010; revised 4 December 2010; accepted 17 March 2011

The radiative QED corrections for the valence electron of the neutral Rg (Z =111) atom are estimated within the framework of the post-Dirac–Fock method. In this method the Koopmans’ approximation is proposed for the electron propagator in the QED diagrams. Such calculation is done for the first time for this super-heavy atom. These results contribute to the discussion concerning the accuracy of the QED corrections in the super-heavy elements. They also provide the accuracy limit of the modern relativistic theoretical calculations for the super-heavy elements.
Keywords: relativistic and quantum electrodynamic effects in atoms and molecules
PACS: 31.30.Jv

KVANTINĖS ELEKTRODINAMIKOS PATAISOS SUNKIŲ IR YPAČ SUNKIŲ ATOMŲ VALENTINIAM ELEKTRONUI
I.A. Goydenko, Yu.Yu. Dmitriev
Sankt Peterburgo valstybinio universiteto Fizikos katedra, Sankt Peterburgas, Rusija

Radiacinės kvantinės elektrodinamikos (KED) pataisos neutralaus Rg (Z = 111) atomo valentiniam elektronui įvertintos „vėlesnio nei Dirako ir Foko“ metodo požiūriu. Šiame metode elektrono propagatorių KED diagramose pasiūlyta aproksimuoti pagal Koopmansą. Šiam ypač sunkiam atomui toks skaičiavimas atliktas pirmą kartą. Rezultatai papildo diskusiją apie KED pataisų ypač sunkiems atomams tikslumą. Jie taip pat rodo šiuolaikinių teorinių skaičiavimų ypač sunkiems atomams tikslumo ribą.

References / Nuorodos


[1] K. Pitzer, J. Chem. Phys. 63, 1033 (1975),
http://dx.doi.org/10.1063/1.431398
[2] N.S. Mosyagin, T.A. Isaev, and A.V. Titov, Chem. Phys. 124, 224302 (2006)
[3] N.S. Mosyagin, A.N. Petrov, A.V. Titov, and I.I. Tupitsyn, in: Recent Advances in the Theory of Chemical and Physical Systems, eds. J.-P. Julien, J. Maruani, D. Mayou, S.Wilson, and G. Delgado-Barrio, Progress in Theoretical Chemistry and Physics, Vol. 15, Part II (Springer, Berlin, 2006) pp. 229–252,
http://www.springer.com/chemistry/physical+chemistry/book/978-1-4020-4527-1
[4] B. Fricke and G. Soff, At. Data Nucl. Data Tables 19, 83 (1977),
http://dx.doi.org/10.1016/0092-640X(77)90010-9
[5] E. Eliav, U. Kaldor, Y. Ishikawa, M. Seth, and P. Pyykkö, Phys. Rev. A 53, 3926 (1994),
http://dx.doi.org/10.1103/PhysRevA.53.3926
[6] I. Goidenko, Eur. Phys. J. D 55, 35 (2009),
http://dx.doi.org/10.1140/epjd/e2009-00216-4
[7] V.V. Flambaum and J.S.M. Ginges, Phys. Rev. A 72, 052115 (2005),
http://dx.doi.org/10.1103/PhysRevA.72.052115
[8] S.I. Gusarov, I.A. Goidenko, Yu.Yu. Dmitriev, and L.N. Labzowsky, Int. J. Quant. Chem. 107, 2616 (2006),
http://dx.doi.org/10.1002/qua.21431
[9] S. Gusarov, T.A. Fedorova, Yu.Yu. Dmitriev, and A. Kovalenko, Int. J. Quant. Chem. 109, 1672 (2009),
http://dx.doi.org/10.1002/qua.22007
[10] N.J. Snyderman, Ann. Phys. 211, 43 (1991),
http://dx.doi.org/10.1016/0003-4916(91)90192-B
[11] L.N. Labzowsky, I.A. Goidenko, M. Tokman, and P. Pyykkö, Phys. Rev. A 59, 2707 (1999),
http://dx.doi.org/10.1103/PhysRevA.59.2707
[12] P. Indelicato, J.P. Santos, S. Boucard, and J.-P. Desclaux, Eur. Phys. J. D 45, 155 (2007),
http://dx.doi.org/10.1140/epjd/e2007-00229-y