[PDF]
http://dx.doi.org/10.3952/lithjphys.51107
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 75–81 (2011)
DISTRIBUTION OF ARTIFICIAL
RADIONUCLIDES IN THE BALTIC SEASIDE ENVIRONMENT
R. Druteikienė a, R. Morkūnienė b, and B.
Lukšienė a
a State Research Institute Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: ruta@ar.fi.lt
b Vilnius Gediminas Technical University,
Saulėtekio 11, LT-10223 Vilnius, Lithuania
Received 8 November 2010; revised
14 January 2011; accepted 17 March 2011
Investigation on 137Cs
and 239,240Pu activity concentration was undertaken in
a coastal zone of the Baltic Sea on the Lithuanian territory to
study the vertical distribution of radionuclides (down to 30 cm).
The Baltic seaside is one of the regions where the highest
radionuclide concentrations after the Chernobyl NPP accident were
detected. Moreover, this area is a significant recreational zone,
therefore, peculiarities of radionuclide spreading in the
environmental ecosystem are important from the radioecological
point of view. The obtained results of vertical distribution of 137Cs
and 239,240Pu in sand and forest soil suggest that the
radionuclide downward migration depends on the structure of matrix
and its chemical composition. Besides, the results of radionuclide
distribution on the stripe between the Baltic Sea and the
Curronian Lagoon indicate that the sea is a possible source of
radioactive contaminants.
Keywords: plutonium, radiocesium,
activity concentration, sand, forest soil, migration, organic
matter
PACS: 28.60.+s, 82.80.-d, 89.40.Cc, 89.60.Ec
DIRBTINIŲ RADIONUKLIDŲ
PASISKIRSTYMAS BALTIJOS PAJŪRYJE
R. Druteikienė a, R. Morkūnienė b, B.
Lukšienė a
a Valstybinis mokslinių tyrimų institutas Fizinių
ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus Gedimino technikos universitetas,
Vilnius, Lietuva
Tirtas 239,240Pu ir 137Cs
savitojo aktyvumo vertikalus pasiskirstymas Kuršių nerijos miško
dirvožemio ir Baltijos pajūrio smėlio 30 cm paviršiaus sluoksnyje.
Didžiausios 137Cs ir 239,240Pu savitojo
aktyvumo vertės nustatytos miško dirvožemio 0–5 cm sluoksnyje,
giliau jos eksponentiškai mažėjo. Pakrantės smėlio vertikaliame
profilyje abiejų radionuklidų savitasis aktyvumas pasiskirstęs
tolygiai. Tyrimų rezultatai parodė, kad radionuklidų vertikalią
migraciją miško dirvožemyje lemia organinė medžiaga, kurios kiekis
siekia iki 91% viršutiniame 5 cm sluoksnyje. Pakrantės smėlyje
radionuklidų savitojo aktyvumo vertikalųjį pasiskirstymą lemia
mineralinė matricos sudėtis.
References / Nuorodos
[1] E. Holm, Plutonium in the Baltic Sea, Appl. Radiat. Isot. 46(11),
1225–1229 (1995),
http://dx.doi.org/10.1016/0969-8043(95)00164-9
[2] T. Zalewska and J. Lipska, Contamination of the Southern Baltic
Sea with 137Cs and 90Sr over the period
2000–2004, J. Environ. Radioact. 91, 1–14 (2006),
http://dx.doi.org/10.1016/j.jenvrad.2006.08.001
[3] T.K. Ikäheimonen, I. Outola, V.-P. Vartti, and P. Kotilainen,
Radioactivity in the Baltic Sea: inventories and temporal trends of
137Cs and 90Sr in water and sediments, J.
Radioanal. Nucl. Chem. 282, 419–425 (2009),
http://dx.doi.org/10.1007/s10967-009-0144-1
[4] B. Skwarzec, D.I. Struminska, and M. Prucnal, Estimates of 239,240Pu
inventories in Gdansk bay and Gdansk basin, J. Environ. Radioact. 70,
237–252 (2003),
http://dx.doi.org/10.1016/S0265-931X(03)00107-3
[5] P. Lindahl, P. Roos, E. Holm, and H. Dahlgaard, Studies of Np
and Pu in the marine environment of Swedish–Danish waters and the
North Atlantic Ocean, J. Environ. Radioact. 82, 285–301
(2005),
http://dx.doi.org/10.1016/j.jenvrad.2005.01.011
[6] S.P. Nielsen, P. Bengston, R. Bojanowski, P. Hagel, J. Herrmann,
E. Illus, E. Jakobson, S. Motiejūnas, Y. Panteleev, A. Skujina, and
M. Suplinska, The radiological exposure of man from radioactivity in
the Baltic Sea, Sci. Tot. Environ. 237–238, 133–141 (1999),
http://dx.doi.org/10.1016/S0048-9697(99)00130-8
[7] V. Remeikis, R. Gvozdaitė, R. Druteikienė, A. Plukis, N.
Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in sediments
of Lithuania lakes, Nukleonika 50(2), 61–66 (2005),
http://www.nukleonika.pl/www/back/abstract/vol50_2005/v50n2p061.htm
[8] J. Herrmann, T.K. Ikäheimonen, E. Ilus, G. Kanisch, M. Lüning,
J. Mattila, S.P. Nielsen, I. Osvath, and I. Outola, in: Radioactivity
in the Baltic Sea, 1999–2006, HELCOM thematic assessment,
Baltic Sea Environment Proceedings No. 117 (HELCOM, Finland, 2009)
[9] Summary Report on the Post-accident Review Meeting on the
Chernobyl Accident, INSAG Series No. 1 (IAEA, Vienna, 1986) p.
106,
http://www-pub.iaea.org/mtcd/publications/PubDetails.asp?pubId=3598
[10] Worldwide Marine Radioactivity Studies (WOMARS):
Radionuclide Levels in Oceans and Seas, IAEA TECDOC Series No.
1429 (IAEA, Vienna, 2005) p. 125,
http://www-pub.iaea.org/MTCD/publications/PDF/TE_1429_web.pdf
[11] E. Ilus, J. Mattila, S.P. Nielsen, E. Jakobson, J. Herrmann, V.
Graveris, B. Vilimaite-Silobritiene, M. Suplinska, A. Stepanov, and
M.Lüning, in: Long-lived radionuclides in the seabed of the
Baltic Sea, HELCOM thematic assessment, Baltic Sea Environment
Proceedings No. 110 (HELCOM, Finland, 2007)
[12] S. Bergström and B. Carlsson, River runoff to the Baltic Sea:
1950–1990, Ambio 23, 280–287 (1994),
http://www.jstor.org/discover/10.2307/4314220?uid=3738480&uid=2&uid=4&sid=21105162685843
[13] B. Skwarzec, Polonium, uranium and plutonium in the southern
Baltic Sea, Ambio 26, 113–117 (1997),
http://www.jstor.org/discover/10.2307/4314562?uid=3738480&uid=2&uid=4&sid=21105162685843
[14] D. Butkus, B. Lukšienė, R. Druteikienė, and M. Lebedytė, in: Proceedings,
Regional IRPA congress, Stockholm (SE), 12–13 June 1998, eds.
J. Søgaard-Hansen and A. Damkjær (Risø National Laboratory,
Roskilde, 1998) pp. 169-175
[15] R. Druteikienė and B. Lukšienė, Plutonium in the environment,
Atmos. Phys. 19(1) 47–57 (1997)
[16] B. Lukšienė, R. Druteikienė, R. Gvozdaitė, and A. Gudelis,
Comparative analysis of 239Pu, 137Cs, 210Pb
and 40K spatial distributions in the top soil layer at
the Baltic coast, J. Environ. Radioact. 87, 305–314 (2006),
http://dx.doi.org/10.1016/j.jenvrad.2005.12.005
[17] P. Bossew and G. Kirchner, Modelling the vertical distribution
of radionuclides in soil. Part 1: the convection–dispersion equation
revisited, J. Environ. Radioact. 73, 127–150 (2004),
http://dx.doi.org/10.1016/j.jenvrad.2003.08.006
[18] G.D. Arapis and M.G. Karandinos, Migration of 137Cs
in the soil of sloping semi-natural ecosystems in northern Greece.
J. Environ. Radioact. 77, 133–142 (2004),
http://dx.doi.org/10.1016/j.jenvrad.2004.03.004
[19] M.S. Al-Masri, Vertical distribution and inventories of 137Cs
in the Syrian soils of the eastern Mediterranean region, J. Environ.
Radioact. 86, 187–198 (2006),
http://dx.doi.org/10.1016/j.jenvrad.2005.08.006
[20] S. Almgren and M. Isaksson, Vertical migration studies of 137Cs
from nuclear weapons fallout and the Chernobyl accident, J. Environ.
Radioact. 91, 90–102 (2006),
http://dx.doi.org/10.1016/j.jenvrad.2006.08.008
[21] N. Tarasiuk, N. Špirkauskaitė, T. Petelski, and M. Chomka,
Radiocesium load on the Baltic Sea beach, Environ. Chem. Phys. 22(3–4),
103–111 (2000)
[22] F.R. Livens and M.S. Baxter, Chemical associations of
artificial radionuclides in Cumbrian soil, J. Environ. Radioact. 7,
75–86 (1988),
http://dx.doi.org/10.1016/0265-931X(88)90043-4
[23] J.M. Abril and E. Fraga, Some physical and chemical features of
the variability of kD distribution coefficients of radionuclides, J.
Environ. Radioact. 30(3), 253–270 (1996),
http://dx.doi.org/10.1016/0265-931X(95)00010-8
[24] M.H. Lee and C.W. Lee, Association of fallout-derived 137Cs,
90Sr and 239,240Pu with natural organic
substances in soil, J. Environ. Radioact. 47, 253–262
(2000),
http://dx.doi.org/10.1016/S0265-931X(99)00033-8
[25] Q. Chen, A. Aarkrog, S.P. Nielsen, H. Dahgaalrd, B. Lind, A.K.
Kolstad, and Y. Yu, Procedures for Determination of 239,240Pu,
241Am, 237Np, 234,238U,
228,230,232Th, 99Tc
and 210Pb-210Po
in Environmental Materials, Risø-R-1263(EN) (Risø National
Laboratory, Roskilde, 2001)
[26] Soil Quality – Determination of pH, ISO Standard
10390:2005,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40879
[27] D. Copplestone, M.S. Johnson, and S.R. Jones, Behavior and
transport of radionuclides in soil and vegetation of a sand dune
ecosystem, J. Environ. Radioact. 55, 93–108 (2001),
http://dx.doi.org/10.1016/S0265-931X(00)00181-8
[28] K. Bunzl, W. Kracke, W. Schimmack, and L. Zelles, Forms of
fallout 137Cs and 239,240Pu in successive
horizons of a forest soil, J. Environ. Radioact. 39, 55–68
(1998),
http://dx.doi.org/10.1016/S0265-931X(97)00042-8
[29] I. Nikolova, K.J. Johanson, and S. Clegg, The accumulation of 137Cs
in the biological compartment of forest soil, J. Environ. Radioact.
47, 319–326 (2000),
http://dx.doi.org/10.1016/S0265-931X(99)00048-X