[PDF]    http://dx.doi.org/10.3952/lithjphys.51108

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 53–63 (2011)

CONTROL OF TWO-DIMENSIONAL ELECTRON SPIN BY AN ABRUPT CHANGE OF PHYSICAL PARAMETERS OF A QUANTUM WELL
A. Dargys
Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt

Received 7 March 2011; accepted 17 March 2011

We apply Clifford algebra to investigate 2D electron spin reflection off and transmission through a stepped discontinuity of physical parameters in semiconducting quantum well. The discontinuity may be due to change of spin-orbit interaction constants, effective masses, or electrostatic potential. In the paper the posed problem has been solved exactly. It is shown that the reflected electronic beam has identical spin polarization as the incident one. However, the transmitted beam suffers spin flipping and in general case consists of a mixture of up and down spin states. Optimal conditions for total reversion of 2D electron spin polarization are found. Special attention is paid to correct boundary conditions in the presence of spin-orbit interaction. A simple formula that connects spin polarization of the transmitted beam and SO interaction constants is presented.
Keywords: Clifford algebra, geometric algebra, semiconductors, spintronics, spin polarization, spin flipping, quantum well
PACS: 85.75.-d, 72.25.Dc, 71.70.Ej, 03.65.Fd

DVIMAČIO ELEKTRONO SUKINIO VALDYMAS KVANTINIAME ŠULINYJE NAUDOJANT STAIGŲ FIZIKINIŲ PARAMETRŲ PASIKEITIMĄ
A. Dargys
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Suformuluotas ir išnagrinėtas elektrono sukinio atspindžio ir pernašos uždavinys, kuriame atsižvelgta į staigų fizikinių parametrų pasikeitimą, pavyzdžiui, sukeliamą sukinio ir orbitos sąveikos netolygumo, efektinių masių skirtumo arba potencinio laiptelio buvimo kvantiniame šulinyje. Uždavinys išspręstas pasitelkus Cliffordo algebros, dar vadinamos geometrine algebra, matematinį aparatą. Tiksliai išnagrinėtas atvejis, kai elektronas krinta statmenai netolygumo laipteliui. Parodyta, kad, nepaisant laiptelio savybių, atsispindėjusio elektroninio spindulio poliarizacija visada sutampa su krintančio spindulio poliarizacija. Tuo tarpu praėjusio pro netolygumą elektrono poliarizacija gali pasikeisti į priešingą. Nustatyta, kad bendruoju atveju praėjęs elektroninis spindulys sudarytas iš ordinarinės ir ekstraordinarinės bangų. Apibūdintos optimãlios poliarizacijos apvertimo bei spindulio depoliarizacijos sąlygos, kurias turi atitikti kvantinio šulinio medžiaga abiejose parametrų trūkio pusėse. Gauta labai paprasta formulė, kurioje yra tik sukinio ir orbitos sąveikos konstantos ir kuri leidžia nustatyti praėjusio elektroninio spindulio poliarizaciją. Taip pat gautos elektrono spinoro amplitudės bei jo greičio nenutrūkstamumo lygtys, kurios gali praversti tuo atveju, kai elektrono sukinio judėjimas nagrinėjamas klasiškai.

References / Nuorodos


[1] P. Lounesto, Clifford Algebras and Spinors (Cambridge University Press, Cambridge, 1997),
http://www.amazon.co.uk/gp/reader/0521599164/
[2] G. Casanova, L’algèbre Vectorielle (Presses Universitaires de France, Paris, 1976),
http://www.amazon.fr/Lalg%7B%A3%7Dbre-vectorielle-G-Casanova/dp/2130343058
[3] C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, Cambridge, 2003),
http://www.amazon.co.uk/gp/reader/0521480221/
[4] D. Hestenes, New Foundations for Classical Mechanics (Reidel, Boston, 1995)
[5] B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Singapore, 1988),
http://www.amazon.co.uk/gp/reader/9971502909/#reader_9971502909
[6] W.E. Baylis, Electrodynamics: A Modern Geometric Approach (Birkhäuser, Boston, 1999),
http://www.amazon.co.uk/gp/reader/0817640258/
[7] P.R. Girard, Quaternions, Clifford Algebras and Relativistic Physics (Birkhäuser Verlag AG, Basel, 2007),
http://www.amazon.co.uk/gp/reader/3764377909/
[8] J. Snygg, Clifford Algebra: A Computational Tool for Physicists (Oxford University Press, New York, 1997),
http://www.amazon.co.uk/gp/reader/0195098242/
[9] Geometric Computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, ed. G. Sommer (Springer-Verlag, Berlin, 2001),
http://www.amazon.co.uk/gp/reader/3540411984/
[10] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus (Reidel, Boston, 1984),
http://www.amazon.co.uk/gp/reader/9027716730/
[11] K. Gürlebeck and W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers (John Wiley & Sons Ltd, Chichester, 1997),
http://www.amazon.co.uk/gp/reader/0471962007/
[12] A. Dargys, Analysis of electron spin in semiconductors using geometric algebra, Phys. Scripta 79(5), 055702-1–6 (2009),
http://dx.doi.org/10.1088/0031-8949/79/05/055702
[13] A. Dargys, Hole spin precession in semiconductors: Clifford algebra approach, Phys. Scripta 80(6), 065701-1–11 (2009),
http://dx.doi.org/10.1088/0031-8949/80/06/065701
[14] A. Dargys, Valence band of cubic semiconductors from viewpoint of Clifford algebra, Acta Phys. Pol. A 116(2), 226–231 (2009),
http://przyrbwn.icm.edu.pl/APP/ABSTR/116/a116-2-19.html
[15] A. Dargys, Application of Clifford algebra to analysis of spin properties of semiconductors, Lith. J. Phys. 49(3), 277–284 (2009),
http://dx.doi.org/10.3952/lithjphys.49311
[16] A. Dargys, Valence-band of cubic semiconductors: Clifford algebra approach II, Phys. Scripta 82(1), 015701-1–7 (2010),
http://dx.doi.org/10.1088/0031-8949/82/01/015701
[17] A. Dargys, Double reflection of electron spin in 2D semiconductors, Superlatt. Microstruct. 48(2), 221–229 (2010),
http://dx.doi.org/10.1016/j.spmi.2010.05.015
[18] A. Dargys, Double reflection of electron spin in semiconductors, Acta Phys. Pol. A 119(2), 161–163 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-21.html
[19] V.I. Perel’, S.A. Tarasenko, I.N. Yassievich, S.D. Ganichev, V.V. Bel’kov, and W. Prettl, Spin-dependent tunneling through a symmetric semiconductor barrier, Phys. Rev. B 67(20), 201304-1–3 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.201304
[20] V.M. Ramaglia, D. Bercioux, V. Cataudella, G. De Fillipis, and C.A. Perroni, Spin polarization of electrons with Rashba double-refraction, J. Phys. Cond. Matter 16, 9143–9154 (2004),
http://dx.doi.org/10.1088/0953-8984/16/50/005
[21] M. Khodas, A. Shekhter, and A. M. Finkel’stein, Spin polarization of electrons by nonmagnetic heterostructures: The basics of spin optics, Phys. Rev. Lett. 92(8), 086602-1–4 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.086602
[22] H. Chen, J.J. Heremans, J.A. Peters, A.O. Govorov, N. Goel, S.J. Chung, and M.B. Santos, Spin-polarized reflection in a two-dimensional electron system, Appl. Phys. Lett. 86(3), 032113-1–3 (2005),
http://dx.doi.org/10.1063/1.1849413
[23] S. De Leo and G.C. Ducati, Quaternionic differential operators, J. Math. Phys. 42, 2236–2265 (2001), arXiv:math-ph/0005023,
http://dx.doi.org/10.1063/1.1360195
[24] S. De Leo, G.C. Ducati, and C.C. Nishi, Quaternionic potentials in non-relativistic quantum mechanics, J. Phys. A Math. Gen. 35, 5411–5426 (2002),
http://dx.doi.org/10.1088/0305-4470/35/26/305
[25] S. De Leo, G.C. Ducati, and T.M. Madureira, Analytical plane wave solutions for the quaternionic potential step, J. Math. Phys. 47(8), 082106-1–15 (2006),
http://dx.doi.org/10.1063/1.2227635
[26] S. De Leo and G.C. Ducati, Quaternionic diffusion by a potential step, J. Math. Phys. 47(10), 102104-1–9 (2006), arXiv: math-ph/0611015,
http://dx.doi.org/10.1063/1.2359577
[27] C. Kittel, Quantum Theory of Solids (John Wiley and Sons, New York, 1963)
[28] J. Schliemann, J.C. Egues, and D. Loss, Nonballistic spin-field-effect transistor, Phys. Rev. Lett. 90(14), 146801-1–3 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.146801
[29] D.J. Ben-Daniel and C.B. Duke, Space-charge effects on electron tunneling, Phys. Rev. 152(2), 683–692 (1966),
http://dx.doi.org/10.1103/PhysRev.152.683
[30] G. Fishman, Semi-conducteurs: les bases de la théorie k · p (Les Éditions de l’École Polytechnique, Paris, 2010),
http://www.amazon.co.uk/gp/reader/2730214976/#reader_2730214976
[31] P. Pfeffer and W. Zawadzki, Spin splitting of conduction subbands in GaAs-Ga0.7Al0.3As heterostructures, Phys. Rev. B 52(20), R14332–R14335 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.R14332
[32] W. Zawadzki and P. Pfeffer, Spin-splitting of subband energies due to inversion asymmetry in semiconductor heterostructures, Semicond. Sci. Techn. 19, R1–R17 (2004),
http://dx.doi.org/10.1088/0268-1242/19/1/R01
[33] E.A. de Andrada e Silva, G.C. La Rocca, and F. Bassani, Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells, Phys. Rev. B 55(24), 16293–16299 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.16293
[34] L.W. Molenkamp, G. Schmidt, and G.E.W. Bauer, Rashba Hamiltonian and electron transport, Phys. Rev. B 64(12), 121202-1–4 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.121202
[35] U. Zülicke and C. Schroll, Interface conductance of ballistic ferromagnetic-metal-2DEG hybrid systems with Rashba spin-orbit coupling, Phys. Rev. Lett. 88(2), 029701-1 (2002),
http://dx.doi.org/10.1103/PhysRevLett.88.029701
[36] D. Hestenes, Real spinor fields, J. Math. Phys. 67(4), 798–808 (1967),
http://dx.doi.org/10.1063/1.1705279
[37] D. Hartley and P. Tuckey, Gröbner bases in Clifford and Grassmann algebras, J. Symb. Comput. 20(2), 197–205 (1995),
http://dx.doi.org/10.1006/jsco.1995.1046
[38] R. Abłamowicz, Computation of non-commutative Gröbner bases in Grassmann and Clifford algebras, Adv. Appl. Clifford Algebras 20(3–4), 447–476 (2010),
http://dx.doi.org/10.1007/s00006-010-0205-0