[PDF]
http://dx.doi.org/10.3952/lithjphys.51108
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 53–63 (2011)
CONTROL OF TWO-DIMENSIONAL
ELECTRON SPIN BY AN ABRUPT CHANGE OF PHYSICAL PARAMETERS OF A
QUANTUM WELL
A. Dargys
Semiconductor Physics Institute, Center for Physical Sciences
and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt
Received 7 March 2011; accepted 17
March 2011
We apply Clifford algebra to
investigate 2D electron spin reflection off and transmission
through a stepped discontinuity of physical parameters in
semiconducting quantum well. The discontinuity may be due to
change of spin-orbit interaction constants, effective masses, or
electrostatic potential. In the paper the posed problem has been
solved exactly. It is shown that the reflected electronic beam has
identical spin polarization as the incident one. However, the
transmitted beam suffers spin flipping and in general case
consists of a mixture of up and down spin states. Optimal
conditions for total reversion of 2D electron spin polarization
are found. Special attention is paid to correct boundary
conditions in the presence of spin-orbit interaction. A simple
formula that connects spin polarization of the transmitted beam
and SO interaction constants is presented.
Keywords: Clifford algebra, geometric
algebra, semiconductors, spintronics, spin polarization, spin
flipping, quantum well
PACS: 85.75.-d, 72.25.Dc, 71.70.Ej, 03.65.Fd
DVIMAČIO ELEKTRONO SUKINIO
VALDYMAS KVANTINIAME ŠULINYJE NAUDOJANT STAIGŲ FIZIKINIŲ
PARAMETRŲ PASIKEITIMĄ
A. Dargys
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos
institutas, Vilnius, Lietuva
Suformuluotas ir išnagrinėtas elektrono sukinio
atspindžio ir pernašos uždavinys, kuriame atsižvelgta į staigų
fizikinių parametrų pasikeitimą, pavyzdžiui, sukeliamą sukinio ir
orbitos sąveikos netolygumo, efektinių masių skirtumo arba
potencinio laiptelio buvimo kvantiniame šulinyje. Uždavinys
išspręstas pasitelkus Cliffordo algebros, dar vadinamos geometrine
algebra, matematinį aparatą. Tiksliai išnagrinėtas atvejis, kai
elektronas krinta statmenai netolygumo laipteliui. Parodyta, kad,
nepaisant laiptelio savybių, atsispindėjusio elektroninio
spindulio poliarizacija visada sutampa su krintančio spindulio
poliarizacija. Tuo tarpu praėjusio pro netolygumą elektrono
poliarizacija gali pasikeisti į priešingą. Nustatyta, kad
bendruoju atveju praėjęs elektroninis spindulys sudarytas iš
ordinarinės ir ekstraordinarinės bangų. Apibūdintos optimãlios
poliarizacijos apvertimo bei spindulio depoliarizacijos sąlygos,
kurias turi atitikti kvantinio šulinio medžiaga abiejose parametrų
trūkio pusėse. Gauta labai paprasta formulė, kurioje yra tik
sukinio ir orbitos sąveikos konstantos ir kuri leidžia nustatyti
praėjusio elektroninio spindulio poliarizaciją. Taip pat gautos
elektrono spinoro amplitudės bei jo greičio nenutrūkstamumo
lygtys, kurios gali praversti tuo atveju, kai elektrono sukinio
judėjimas nagrinėjamas klasiškai.
References / Nuorodos
[1] P. Lounesto, Clifford Algebras and Spinors (Cambridge
University Press, Cambridge, 1997),
http://www.amazon.co.uk/gp/reader/0521599164/
[2] G. Casanova, L’algèbre Vectorielle (Presses
Universitaires de France, Paris, 1976),
http://www.amazon.fr/Lalg%7B%A3%7Dbre-vectorielle-G-Casanova/dp/2130343058
[3] C. Doran and A. Lasenby, Geometric Algebra for Physicists
(Cambridge University Press, Cambridge, 2003),
http://www.amazon.co.uk/gp/reader/0521480221/
[4] D. Hestenes, New Foundations for Classical Mechanics
(Reidel, Boston, 1995)
[5] B. Jancewicz, Multivectors and Clifford Algebra in
Electrodynamics (World Scientific, Singapore, 1988),
http://www.amazon.co.uk/gp/reader/9971502909/#reader_9971502909
[6] W.E. Baylis, Electrodynamics: A Modern Geometric Approach
(Birkhäuser, Boston, 1999),
http://www.amazon.co.uk/gp/reader/0817640258/
[7] P.R. Girard, Quaternions, Clifford Algebras and Relativistic
Physics (Birkhäuser Verlag AG, Basel, 2007),
http://www.amazon.co.uk/gp/reader/3764377909/
[8] J. Snygg, Clifford Algebra: A Computational Tool for
Physicists (Oxford University Press, New York, 1997),
http://www.amazon.co.uk/gp/reader/0195098242/
[9] Geometric Computing with Clifford Algebras: Theoretical
Foundations and Applications in Computer Vision and Robotics,
ed. G. Sommer (Springer-Verlag, Berlin, 2001),
http://www.amazon.co.uk/gp/reader/3540411984/
[10] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric
Calculus (Reidel, Boston, 1984),
http://www.amazon.co.uk/gp/reader/9027716730/
[11] K. Gürlebeck and W. Sprössig, Quaternionic and Clifford
Calculus for Physicists and Engineers (John Wiley & Sons
Ltd, Chichester, 1997),
http://www.amazon.co.uk/gp/reader/0471962007/
[12] A. Dargys, Analysis of electron spin in semiconductors using
geometric algebra, Phys. Scripta 79(5), 055702-1–6 (2009),
http://dx.doi.org/10.1088/0031-8949/79/05/055702
[13] A. Dargys, Hole spin precession in semiconductors: Clifford
algebra approach, Phys. Scripta 80(6), 065701-1–11 (2009),
http://dx.doi.org/10.1088/0031-8949/80/06/065701
[14] A. Dargys, Valence band of cubic semiconductors from viewpoint
of Clifford algebra, Acta Phys. Pol. A 116(2), 226–231
(2009),
http://przyrbwn.icm.edu.pl/APP/ABSTR/116/a116-2-19.html
[15] A. Dargys, Application of Clifford algebra to analysis of spin
properties of semiconductors, Lith. J. Phys. 49(3), 277–284
(2009),
http://dx.doi.org/10.3952/lithjphys.49311
[16] A. Dargys, Valence-band of cubic semiconductors: Clifford
algebra approach II, Phys. Scripta 82(1), 015701-1–7 (2010),
http://dx.doi.org/10.1088/0031-8949/82/01/015701
[17] A. Dargys, Double reflection of electron spin in 2D
semiconductors, Superlatt. Microstruct. 48(2), 221–229
(2010),
http://dx.doi.org/10.1016/j.spmi.2010.05.015
[18] A. Dargys, Double reflection of electron spin in
semiconductors, Acta Phys. Pol. A 119(2), 161–163 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-21.html
[19] V.I. Perel’, S.A. Tarasenko, I.N. Yassievich, S.D. Ganichev,
V.V. Bel’kov, and W. Prettl, Spin-dependent tunneling through a
symmetric semiconductor barrier, Phys. Rev. B 67(20),
201304-1–3 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.201304
[20] V.M. Ramaglia, D. Bercioux, V. Cataudella, G. De Fillipis, and
C.A. Perroni, Spin polarization of electrons with Rashba
double-refraction, J. Phys. Cond. Matter 16, 9143–9154
(2004),
http://dx.doi.org/10.1088/0953-8984/16/50/005
[21] M. Khodas, A. Shekhter, and A. M. Finkel’stein, Spin
polarization of electrons by nonmagnetic heterostructures: The
basics of spin optics, Phys. Rev. Lett. 92(8), 086602-1–4
(2004),
http://dx.doi.org/10.1103/PhysRevLett.92.086602
[22] H. Chen, J.J. Heremans, J.A. Peters, A.O. Govorov, N. Goel,
S.J. Chung, and M.B. Santos, Spin-polarized reflection in a
two-dimensional electron system, Appl. Phys. Lett. 86(3),
032113-1–3 (2005),
http://dx.doi.org/10.1063/1.1849413
[23] S. De Leo and G.C. Ducati, Quaternionic differential operators,
J. Math. Phys. 42, 2236–2265 (2001), arXiv:math-ph/0005023,
http://dx.doi.org/10.1063/1.1360195
[24] S. De Leo, G.C. Ducati, and C.C. Nishi, Quaternionic potentials
in non-relativistic quantum mechanics, J. Phys. A Math. Gen. 35,
5411–5426 (2002),
http://dx.doi.org/10.1088/0305-4470/35/26/305
[25] S. De Leo, G.C. Ducati, and T.M. Madureira, Analytical plane
wave solutions for the quaternionic potential step, J. Math. Phys. 47(8),
082106-1–15 (2006),
http://dx.doi.org/10.1063/1.2227635
[26] S. De Leo and G.C. Ducati, Quaternionic diffusion by a
potential step, J. Math. Phys. 47(10), 102104-1–9 (2006),
arXiv: math-ph/0611015,
http://dx.doi.org/10.1063/1.2359577
[27] C. Kittel, Quantum Theory of Solids (John Wiley and
Sons, New York, 1963)
[28] J. Schliemann, J.C. Egues, and D. Loss, Nonballistic
spin-field-effect transistor, Phys. Rev. Lett. 90(14),
146801-1–3 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.146801
[29] D.J. Ben-Daniel and C.B. Duke, Space-charge effects on electron
tunneling, Phys. Rev. 152(2), 683–692 (1966),
http://dx.doi.org/10.1103/PhysRev.152.683
[30] G. Fishman, Semi-conducteurs: les bases de la théorie k · p
(Les Éditions de l’École Polytechnique, Paris, 2010),
http://www.amazon.co.uk/gp/reader/2730214976/#reader_2730214976
[31] P. Pfeffer and W. Zawadzki, Spin splitting of conduction
subbands in GaAs-Ga0.7Al0.3As
heterostructures, Phys. Rev. B 52(20), R14332–R14335 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.R14332
[32] W. Zawadzki and P. Pfeffer, Spin-splitting of subband energies
due to inversion asymmetry in semiconductor heterostructures,
Semicond. Sci. Techn. 19, R1–R17 (2004),
http://dx.doi.org/10.1088/0268-1242/19/1/R01
[33] E.A. de Andrada e Silva, G.C. La Rocca, and F. Bassani,
Spin-orbit splitting of electronic states in semiconductor
asymmetric quantum wells, Phys. Rev. B 55(24), 16293–16299
(1997),
http://dx.doi.org/10.1103/PhysRevB.55.16293
[34] L.W. Molenkamp, G. Schmidt, and G.E.W. Bauer, Rashba
Hamiltonian and electron transport, Phys. Rev. B 64(12),
121202-1–4 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.121202
[35] U. Zülicke and C. Schroll, Interface conductance of ballistic
ferromagnetic-metal-2DEG hybrid systems with Rashba spin-orbit
coupling, Phys. Rev. Lett. 88(2), 029701-1 (2002),
http://dx.doi.org/10.1103/PhysRevLett.88.029701
[36] D. Hestenes, Real spinor fields, J. Math. Phys. 67(4),
798–808 (1967),
http://dx.doi.org/10.1063/1.1705279
[37] D. Hartley and P. Tuckey, Gröbner bases in Clifford and
Grassmann algebras, J. Symb. Comput. 20(2), 197–205 (1995),
http://dx.doi.org/10.1006/jsco.1995.1046
[38] R. Abłamowicz, Computation of non-commutative Gröbner bases in
Grassmann and Clifford algebras, Adv. Appl. Clifford Algebras 20(3–4),
447–476 (2010),
http://dx.doi.org/10.1007/s00006-010-0205-0