[PDF]
http://dx.doi.org/10.3952/lithjphys.51201
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 147–154 (2011)
DIELECTRIC STUDIES ON BINARY
MIXTURES OF FORMAMIDE WITH ETHANOLAMINE USING THE TIME DOMAIN
TECHNIQUE
P.B. Undre a, P.W. Khirade a, S.B. Jagdale
b, S.N. Helambe b, and S.C. Mehrotra c
a Department of Physics, Dr. Babasaheb Ambedkar
Marathwada University, Aurangabad–431 004, India
E-mail: prabhakarundre@yahoo.co.in
b Microwave Research Laboratory, Deogiri College,
Aurangabad, India
c Department of Computer Science and Information
Technology, Dr. Babasaheb Ambedkar Marathwada University,
Aurangabad–431 004, India
Received 29 January 2011; revised 3
March 2011; accepted 17 March 2011
Dielectric relaxation measurements
on formamide (FA) – ethanolamine (ETA) solvent mixtures have been
carried out across the entire concentration range using time
domain reflectometry technique at 15, 25, 35, and 45
C
over the frequency range from 10 MHz to 10 GHz. The mixtures
exhibit a principle dispersion of the Davidson–Cole relaxation
type at microwave frequencies. Bilinear calibration method is used
to obtain complex permittivity
*(
) from
complex reflection coefficient
*(
) over
the frequency range 10 MHz to 10 GHz. The excess permittivity
E,
excess inverse relaxation time (1/
)
E,
Kirkwood correlation factor
geff , and
thermodynamic parameters such as Gibbs energy of activation
G
and molar enthalpy of activation
H
are also calculated to study the solute–solvent interaction.
Keywords: activation energy, excess
parameters, Kirkwood correlation factor, time domain reflectometry
PACS: 77.22.Ch, 77.22.Gm, 77.84.Nh
DVINARIŲ FORMAMIDO IR
ETANOLAMINO MIŠINIŲ DIELEKTRINIS TYRIMAS LAIKINĖS
REFLEKTOMETRIJOS METODU
P.B. Undre a, P.W. Khirade a, S.B. Jagdale
b, S.N. Helambe b, S.C. Mehrotra c
a Dr. Babasaheb Ambedkar Marathwada universiteto
Fizikos katedra, Aurangabadas, Indija
b Mikrobangų tyrimo laboratorija, Deogiri
koledžas, Aurangabadas, Indija
c Dr. Babasaheb Ambedkar Marathwada
universiteto Kompiuterijos ir informacinių technologijų katedra,
Aurangabadas, Indija
Laikinės reflektometrijos metodu matuota
formamido (FA) ir etanolamino (ETA) tirpalų mišinių dielektrinė
relaksacija visame koncentracijų diapazone esant 15, 25, 35 ir 45
C temperatūrai ir dažniui nuo 10 MHz iki 10 GHz. Mikrobangų
dažnių diapazone pagrindin mišinių dispersija yra Davidson–Cole
relaksacijos tipo. Kompleksinei skvarbai
*(
) iš
kompleksinio atspindžio gauti dažnių nuo 10 MHz iki 10 GHz
diapazone taikomas dvitiesinio kalibravimo metodas. Tirpintos
medžiagos ir tirpiklio sąveikai tirti taip pat skaičiuoti
perteklinė skvarba (
E),
perteklinė atvirkštinė relaksacijos trukmė (1/
)
E,
Kirkwoodo koreliacijos faktorius (
geff) ir
termodinaminiai parametrai, tokie kaip Gibso aktyvacijos energija
(
G)
bei molinė aktyvacijos entalpija (
H).
References / Nuorodos
[1] A. Choudhari, H. Choudhari, and S.C. Mehrotra, J. Chin. Chem.
Soc. 49, 489 (2002),
http://proj3.sinica.edu.tw/~chem/servxx6/files/paper_11339_1269419395.pdf
[2] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan, P. Undre,
P.W. Khirade, and S.C. Mehrotra, Bull. Kor. Chem. Soc. 27(12),
2040 (2006),
http://dx.doi.org/10.5012/bkcs.2006.27.12.2040
[3] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan, P. Undre,
P.W. Khirade, and S.C. Mehrotra, Mol. Phys. 104(18), 2835
(2006),
http://dx.doi.org/10.1080/00268970600842737
[4] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan,P. Undre,
P.W. Khirade, and S.C. Mehrotra, Chem. Papers Chem. Zvesti 61(4),
300 (2007),
http://dx.doi.org/10.2478/s11696-007-0037-0
[5] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan, P. Undre,
P.W. Khirade, and S.C. Mehrotra, J. Appl. Poly. Sci. 107,
2312 (2008),
http://dx.doi.org/10.1002/app.27384
[6] A.C. Kumbharkhane, S.M. Puranik, and S.C. Mehrotra, J. Sol.
Chem. 22, 219 (1993),
http://dx.doi.org/10.1007/BF00649245
[7] J. Lou, T.A. Hatton, and P.E. Laibinis, J. Phys. Chem. A 101,
5262 (1997),
http://dx.doi.org/10.1021/jp970731u
[8] Prabhakar Undre, S.N. Helambe, S.B. Jagdale, P.W. Khirade, and
S.C. Mehrotra, Pramana J. Phys. 68(5), 851 (2007),
http://dx.doi.org/10.1007/s12043-007-0083-8
[9] Prabhakar Undre, S.N. Helambe, S.B. Jagdale, P.W. Khirade, and
S.C. Mehrotra, J. Mol. Liq. 137, 147 (2008),
http://dx.doi.org/10.1016/j.molliq.2007.06.004
[10] V.P. Pawar and S.C. Mehrotra, J. Mol. Liq. 95, 63
(2002),
http://dx.doi.org/10.1016/S0167-7322(01)00282-3
[11] P. Sivagurunathan, K. Dharmalingam, K. Ramachandran, P. Undre,
P.W. Khirade, and S.C. Mehrotra, Main Group Chem. 4(3), 235
(2005),
http://dx.doi.org/10.1080/10241220600628640
[12] P. Sivagurunathan, K. Dharmalingam, K. Ramachandran, P. Undre,
P.W. Khirade, and S.C. Mehrotra, Physica B 387, 203 (2007),
http://dx.doi.org/10.1016/j.physb.2006.04.005
[13] U. Sankar, G. Parthipan, P. Undre, P.W. Khirade, T. Thenappan,
and S.C. Mehrotra, Main Group Chem. 8(2), 61 (2009),
http://dx.doi.org/10.1080/10241220902977596
[14] K. Ramachandran, K. Dharmalingam, P. Sivagurunathan, Prabhakar
Undre, P.W. Khirade, and S.C. Mehrotra, Main Group Chem. 4(4),
303 (2005),
http://dx.doi.org/10.1080/10241220600748505
[15] R.J. Sengwa , Vinita Khatri, and Sonu Sankhla, J. Sol. Chem. 38,
763 (2009),
http://dx.doi.org/10.1007/s10953-009-9408-1
[16] R.J. Sengwa, Sonu Sankhla, and Vinita Khatri, J. Mol. Liq. 151,
17 (2010),
http://dx.doi.org/10.1016/j.molliq.2009.10.011
[17] R.J. Sengwa, Vinita Khatri, Sonu Sankhla, J. Mol. Liq. 144,
89 (2009),
http://dx.doi.org/10.1016/j.molliq.2008.10.009
[18] Jianfeng Lou, A.K. Paravastu, P.E. Laibinis, and T.A. Hatton,
J. Phys. Chem. A 101, 9892 (1997),
http://dx.doi.org/10.1021/jp972785+
[19] S. Mashimo, S. Kuwabara, S. Yogihara, and K. Higasi, J. Chem.
Phys. 90, 3292 (1989),
http://dx.doi.org/10.1063/1.455883
[20] R.H. Cole, J.G. Berbarian, S. Mashimo, G. Chryssikos, A. Burns,
and E. Tombari, J. Appl. Phys. 66, 793 (1989),
http://dx.doi.org/10.1063/1.343499
[21] S.M. Puranik, A.C. Kumbharkhane, and S.C. Mehrotra, J. Microw.
Power Electromagn. Energy 26, 196 (1991),
http://www.jmpee.org/JMPEE_temp/26-4_bl/JMPEEA-26-4-Pg196.htm
[22] S. Havriliak and S. Negami, J. Polymer Sci. Part C 14,
99 (1966),
http://dx.doi.org/10.1002/polc.5070140111
[23] D.W. Davidson and R.H. Cole, J. Chem. Phys. 18, 1484
(1950),
http://dx.doi.org/10.1063/1.1747518
[24] K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941),
http://dx.doi.org/10.1063/1.1750906
[25] P. Debye, Polar Molecules (The Chemical Catalogue
Company, New York, 1929) ,
[26] S.M. Puranik, A.C. Kumbharkhane, and S.C. Mehrotra, Indian J.
Chem. A 32, 613 (1993)
[27] J. Barthel, R. Buchner, and Wurm Bernhard, J. Mol. Liq. 98–99,
51–69 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00309-9
[28] M. Tabellout, P. Lanceleur, and J.R. Emery, J. Chem. Soc.
Faraday Trans. 86, 1493 (1990),
http://dx.doi.org/10.1039/ft9908601493
[29] S. Ahire, A. Chaudhari, M. Lokhande, and S.C. Mehrotra, J.
Solution Chem. 27, 993 (1998),
http://dx.doi.org/10.1023/A:1022648204099
[30] P.W. Khirade, A. Chaudhari, J.B. Shinde, S.N. Helambe, and S.C.
Mehrotra, J. Solution Chem. 28, 1037 (1999),
http://dx.doi.org/10.1023/A:1022666128166
[31] S.N. Helambe, M.P. Lokhande, A.C. Kumbharkhane, S.C. Mehrotra,
and S. Doraiswamy, Pramana–J. Phys. 44(5), 405 (1995),
http://dx.doi.org/10.1007/BF02848492
[32] H. Fröhlich, Theory of Dielectrics (Oxford University
Press, London, 1949)
[33] G. Moumouzias, D.K. Panopoulos, and G. Ritzoulis, J. Chem. Eng.
Data 36, 20 (1991),
http://dx.doi.org/10.1021/je00001a006
[34] N.E. Hill, W.E. Vaughan, A.H. Price, and M. Davies, Dielectric
Properties and Molecular Behaviour (Reinhold, London, 1969)
[35] S. Glasstone, K.J. Laidler, and H. Eyring, Theory of Rate
Processes (McGraw–Hill Book Co., New York, 1941) 548 p.