[PDF]      http://dx.doi.org/10.3952/lithjphys.51203

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 127–135 (2011)

DEPENDENCE OF Z-SCAN MEASUREMENTS ON THE SPATIOTEMPORAL PULSE PARAMETERS
N. Slavinskis, E. Murauskas, and A.S. Dement’ev
Institute of Physics, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: aldement@ktl.mii.lt

Received 11 February 2011; revised 12 May 2011; accepted 21 June 2011

We report the experimental results obtained by the closed-aperture Z-scan technique where Nd:YAG minilaser short pulses with different temporal pulse shapes have been used. It is shown that the nonlinear refractive index coefficient n2 of fused silica (one of the smallest among the condensed media) can be successfully measured using the pulses with durations of about 1 ns and energies less than 1 mJ. Very good compatibility between the values for the same samples of fused silica is obtained only if the temporal shapes of the used SBS-compressed, single longitudinal or multi longitudinal mode pulses are properly taken into account. It is also shown that spatial properties of the used beams should be taken account of properly. By these experiments we emphasize the significance of taking into account the temporal pulse shape profile for accurate determination of the nonlinear refractive index by the Z-scan technique.
Keywords: Z-scan, pulse shape, nonlinear refractive index, fused silica
PACS: 42.55.Xi, 42.65.Jx, 42.70.Ce


Z SKENAVIMO MATAVIMŲ PRIKLAUSOMYBĖ NUO ERDVINIŲ IR LAIKINIŲ IMPULSŲ PARAMETRŲ
N. Slavinskis, E. Murauskas, A.S. Dementjev
Fizinių ir technologijos mokslų centro Fizikos institutas, Vilnius, Lietuva

Pateikiami Z skenavimo su uždara apertūra eksperimentiniai rezultatai, kuriems gauti naudoti Nd:YAG minilazerio trumpi impulsai su skirtingomis laikinėmis impulsų formomis. Parodyta, kad netiesinio lūžio rodiklis n2 kvarciniam stiklui (vienas iš mažiausių kondensuotoms terpėms) gali buti sėkmingai išmatuotas naudojant impulsus, kurių trukmė apie 1 ns ir energija mažesnė negu 1 mJ. Labai geras išmatuotų verčių suderinamumas gaunamas tik tada, kai apdorojant rezultatus yra deramai atsižvelgiama į priverstinės Brijueno sklaidos kompresijos metu gaunamas ir vienos bei kelių išilginių modų generuojamų impulsų formas. Taip pat parodyta, kad apdorojant rezultatus reikia teisingai įskaityti naudojamų pluoštų erdvinius parametrus. Šiais eksperimentais akcentuojama impulsų formos įskaitymo svarba vertinant medžiagų netiesinį lūžio rodiklį iš Z skenavimo eksperimentinių duomenų.

References / Nuorodos


[1] R.L. Sutherland, with contributions by D.G. McLean and S. Kirkpatrick, Handbook of Nonlinear Optics, Optical Engineering Vol. 82, 2nd ed. (Marcel Dekker, Inc., New York, 2003),
http://www.amazon.co.uk/gp/reader/0824742435/
[2] Self-focusing: Past and Present. Fundamentals and Prospects, Topics in Applied Physics Vol. 114, eds. R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, 2009),
http://www.amazon.co.uk/gp/reader/1441921818/
[3] D.N. Christodoulides, I.C. Khoo, G.J. Salamo, G.I. Stegeman, and E.W. Van Stryland, Nonlinear refraction and absorption: mechanisms and magnitudes, Adv. Opt. Photon. 2(1), 60–200 (2010),
http://dx.doi.org/10.1364/AOP.2.000060
[4] M. Rumi and J.W. Perry, Two-photon absorption: an overview of measurements and principles, Adv. Opt. Photon. 2(3), 451–518 (2010),
http://dx.doi.org/10.1364/AOP.2.000451
[5] M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26(4), 760–769 (1990),
http://dx.doi.org/10.1109/3.53394
[6] “Discovering” Z-scan; Celebrating the Z-scan Technique, IEEE LEOS Newsletter 21(1), 28–29 (2007),
http://photonicssociety.org/newsletters/feb07/21leos01.pdf
[7] P.B. Chapple, J. Staromlynska, J.A. Hermann, and T.J. Mckay, Single-beam Z-scan: measurement techniques and analysis, J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997),
http://dx.doi.org/10.1142/S0218863597000204
[8] E.W. Van Stryland and M. Sheik-Bahae, Z-scan measurements of optical nonlinearities, in: Characterization Techniques and Tabulations for Organic Nonlinear Materials, Optical Engineering Vol. 60, eds. M.G. Kuzyk and C.W. Dirk (Marcel Dekker Inc., New York, 1998) pp. 655–692,
http://www.amazon.co.uk/Characterization-Techniques-Tabulations-Nonlinear-Engineering/dp/0824799682/
[9] G.L. Wood and E.J. Sharp, Nonlinear Optics, in: Electro-Optics Handbook, 2nd ed., eds. R.W. Waynant and M.N. Ediger (McGraw-Hill, New York, 2000) pp. 13.1–13.28,
http://www.amazon.co.uk/Electro-Optics-Handbook-Ronald-Waynant-Marwood/dp/0070687161/
[10] M. Sheik-Bahae and M.P. Hasselbeck, Third-order optical nonlinearities, in: Handbook of Optics, Vol. IV, 3rd ed., ed. M. Bass (McGraw-Hill, New York, 2009) pp. 16.1–16.36,
http://www.amazon.co.uk/Handbook-Optics-Third-Properties-Materials/dp/0071498923/
[11] A. Dement’ev, A. Jovaiša, and R. Navakas, Modified Z-scan method for determination of nonlinear refraction of optical materials through the measurement of power-weighted timeaveraged beam propagation factor, Proc. SPIE 4932, 286–295 (2003),
http://dx.doi.org/10.1117/12.472481
[12] B. Gu, X-Q. Huang, S.-Q. Tan, and H.-T. Wang, A precise data processing method for extracting χ(3) from Z-scan technique, Opt Commun. 277, 209–213 (2007),
http://dx.doi.org/10.1016/j.optcom.2007.05.001
[13] L. Pálfalvi, B.C. Tóth, G. Almási, J.A. Fülöp, and J. Hebling, A general Z-scan theory, Appl. Phys. B 97, 679–685 (2009),
http://dx.doi.org/10.1007/s00340-009-3656-z
[14] T. Shimada, N.A. Kurnit, and M. Sheik-Bahae, Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique, Proc. SPIE 2714, 52–60 (1996),
http://dx.doi.org/10.1117/12.240425
[15] T. Olivier, F. Billard, and H. Akhouayri, Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica, Opt. Express 12(7), 1377–1382 (2004),
http://dx.doi.org/10.1364/OPEX.12.001377
[16] A. Dement’ev and A. Jovaisa, Pulse shape influence on the accuracy of Z-scan measurements, Nonlin. Analysis Model. Control 10(2), 119–136 (2005),
http://www.lana.lt/journal/17/Dementev.pdf
[17] R. Adair, L.L. Chase, and S.A. Payne, Nonlinear refractive index of optical crystals, Phys. Rev. B 39(5), 3337–3350 (1989),
http://dx.doi.org/10.1103/PhysRevB.39.3337
[18] A.J. Taylor, G. Rodriguez, and T.S. Clement, Determination of n2 by direct measurement of the optical phase, Opt. Lett. 21(22), 1812–1814 (1996),
http://dx.doi.org/10.1364/OL.21.001812
[19] D. Milam, Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica, Appl. Opt. 37(3), 546–550 (1998),
http://dx.doi.org/10.1364/AO.37.000546
[20] J.E. Aber, M.C. Newstein, and B.A. Garetz, Femtosecond optical Kerr effect measurements in silicate glasses, J. Opt. Soc. Am. B 17(1), 120–127 (2000),
http://dx.doi.org/10.1364/JOSAB.17.000120
[21] Y.-F. Chen, K. Beckwitt, F.W. Wise, B.G. Aitken, J.S. Sanghera, and I.D. Aggarwal, Measurement of fifth- and seventh-order nonlinearities of glasses, J. Opt. Soc. Am. B 23(2), 347–352 (2006),
http://dx.doi.org/10.1364/JOSAB.23.000347
[22] A.V. Smith and B.T. Do, Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm, Appl. Opt. 47(26), 4812–4832 (2008),
http://dx.doi.org/10.1364/AO.47.004812
[23] A. Dement’ev, R. Buzelis, E. Kosenko, E. Murauskas, and R. Navakas, Solid-state lasers with pulse compression by transient stimulated Brillouin and Raman scattering, Proc. SPIE 4415, 92–97 (2001),
http://dx.doi.org/10.1117/12.425476
[24] S.A. Akhmanov, R.V. Khokhlov, and A.P. Sukhorukov, Self-focusing, self-defocusing and self- modulation of laser beams, in: Laser Handbook, Vol. 2, ed. F.T. Arecchi (North-Holland, 1972), pp. 1151–1228,
http://www.amazon.co.uk/Laser-Handbook-v-1-2/dp/0720402131/
[25] V.N. Lugovoy and A.M. Prokhorov, Teoriya rasprostraneniya moshchnogo lazernogo izlucheniya v nelineynoy srede, Usp. Fiz. Nauk 111(2), 203–247 (1973) [in Russian; English translation: Sov. Phys. Usp. 16(5), 658 (1974)],
http://dx.doi.org/10.1070/PU1974v016n05ABEH004127
[26] O. Svelto, Self-focusing, self-trapping, and self-phase modulation of laser beams, in: Progress in Optics, Vol. XII, ed. E. Wolf (North-Holland, 1974) pp. 1–31
[27] R.W. Hellwarth, Third-order optical susceptibilities of liquids and solids, Prog. Quantum Electron. 5, 1–68, (1977),
http://dx.doi.org/10.1016/0079-6727(79)90002-8
[28] R.W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008),
http://www.amazon.co.uk/Nonlinear-Optics-Robert-W-Boyd/dp/0123694701/
[29] A.S. Dement’ev, E.K. Maldutis, and S.V. Sakalauskas, Optical anisotropy, induced in glasses by intensive laser radiation, Quantum Electronics (Kiev) 15, 62–76 (1978) [in Russian]
[30] A.S. Dement’ev, E.K. Maldutis, and S.V. Sakalauskas, Electrostrictive change of refraction index of glasses in elliptical laser beams, Opt. Spektrosk. [Opt. Spectrosc., in Russian] 50(1), 143149 (1981)
[31] A. Dementjev, D. Steponavičius, and R. Buzelis, Quality parameters of general astigmatic laser beams and their measurement, Matavimai Nr. 1(25), 7–13 (2003) [in Lithuanian],
http://internet.ktu.lt/lt/mokslas/zurnalai/matav/z2003/t2003_1a.htm#A.%20Dementjev,%20%20D.%20Steponavi%C4%8Dius,%20%20R.%20Buzelis.
[32] A. Dementjev, R. Navakas, R. Čiegis, and G. Šilko, Analysis of the ISO alternative measurement methods of laser beam widths and propagation factors, Matavimai Nr. 4(28), 17–22 (2003) [in Lithuanian],
http://internet.ktu.lt/lt/mokslas/zurnalai/matav/z2003/t2003_4a.htm#A.%20Dementjev,%20R.%20Navakas,%20R.%20%C4%8Ciegis,%20G.
[33] A.S. Dementjev, A. Jovaisa, G. Silko, and R. Ciegis, On alternative methods for measuring the radius and propagation ratio of axially symmetric laser beams, Quant. Electron. 35(11), 1045–1052 (2005),
http://dx.doi.org/10.1070/QE2005v035n11ABEH013034
[34] N.Y. Tabiryan, V. Jonnalagadda, M.J. Mora, and S.R. Nersisyan, Laser beam and optics characterization with “z-scan” method, Proc. SPIE 4932, 656–666 (2003),
http://dx.doi.org/10.1117/12.472036