[PDF]
http://dx.doi.org/10.3952/lithjphys.51203
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 127–135 (2011)
DEPENDENCE OF Z-SCAN
MEASUREMENTS ON THE SPATIOTEMPORAL PULSE PARAMETERS
N. Slavinskis, E. Murauskas, and A.S. Dement’ev
Institute of Physics, Center for Physical Sciences and
Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: aldement@ktl.mii.lt
Received 11 February 2011; revised
12 May 2011; accepted 21 June 2011
We report the experimental results
obtained by the closed-aperture Z-scan technique where
Nd:YAG minilaser short pulses with different temporal pulse shapes
have been used. It is shown that the nonlinear refractive index
coefficient n2 of fused silica (one of the
smallest among the condensed media) can be successfully measured
using the pulses with durations of about 1 ns and energies less
than 1 mJ. Very good compatibility between the values for the same
samples of fused silica is obtained only if the temporal shapes of
the used SBS-compressed, single longitudinal or multi longitudinal
mode pulses are properly taken into account. It is also shown that
spatial properties of the used beams should be taken account of
properly. By these experiments we emphasize the significance of
taking into account the temporal pulse shape profile for accurate
determination of the nonlinear refractive index by the Z-scan
technique.
Keywords: Z-scan, pulse shape,
nonlinear refractive index, fused silica
PACS: 42.55.Xi, 42.65.Jx, 42.70.Ce
Z SKENAVIMO MATAVIMŲ
PRIKLAUSOMYBĖ NUO ERDVINIŲ IR LAIKINIŲ IMPULSŲ PARAMETRŲ
N. Slavinskis, E. Murauskas, A.S. Dementjev
Fizinių ir technologijos mokslų centro Fizikos institutas,
Vilnius, Lietuva
Pateikiami Z skenavimo su uždara
apertūra eksperimentiniai rezultatai, kuriems gauti naudoti Nd:YAG
minilazerio trumpi impulsai su skirtingomis laikinėmis impulsų
formomis. Parodyta, kad netiesinio lūžio rodiklis n2
kvarciniam stiklui (vienas iš mažiausių kondensuotoms terpėms)
gali buti sėkmingai išmatuotas naudojant impulsus, kurių trukmė
apie 1 ns ir energija mažesnė negu 1 mJ. Labai geras išmatuotų
verčių suderinamumas gaunamas tik tada, kai apdorojant rezultatus
yra deramai atsižvelgiama į priverstinės Brijueno sklaidos
kompresijos metu gaunamas ir vienos bei kelių išilginių modų
generuojamų impulsų formas. Taip pat parodyta, kad apdorojant
rezultatus reikia teisingai įskaityti naudojamų pluoštų erdvinius
parametrus. Šiais eksperimentais akcentuojama impulsų formos
įskaitymo svarba vertinant medžiagų netiesinį lūžio rodiklį iš Z
skenavimo eksperimentinių duomenų.
References / Nuorodos
[1] R.L. Sutherland, with contributions by D.G. McLean and S.
Kirkpatrick, Handbook of Nonlinear Optics, Optical
Engineering Vol. 82, 2nd ed. (Marcel Dekker, Inc., New York, 2003),
http://www.amazon.co.uk/gp/reader/0824742435/
[2] Self-focusing: Past and Present. Fundamentals and Prospects,
Topics in Applied Physics Vol. 114, eds. R.W. Boyd, S.G. Lukishova,
and Y.R. Shen (Springer, 2009),
http://www.amazon.co.uk/gp/reader/1441921818/
[3] D.N. Christodoulides, I.C. Khoo, G.J. Salamo, G.I. Stegeman, and
E.W. Van Stryland, Nonlinear refraction and absorption: mechanisms
and magnitudes, Adv. Opt. Photon. 2(1), 60–200 (2010),
http://dx.doi.org/10.1364/AOP.2.000060
[4] M. Rumi and J.W. Perry, Two-photon absorption: an overview of
measurements and principles, Adv. Opt. Photon. 2(3), 451–518
(2010),
http://dx.doi.org/10.1364/AOP.2.000451
[5] M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. Van
Stryland, Sensitive measurement of optical nonlinearities using a
single beam, IEEE J. Quantum Electron. 26(4), 760–769
(1990),
http://dx.doi.org/10.1109/3.53394
[6] “Discovering” Z-scan; Celebrating the Z-scan
Technique, IEEE LEOS Newsletter 21(1), 28–29 (2007),
http://photonicssociety.org/newsletters/feb07/21leos01.pdf
[7] P.B. Chapple, J. Staromlynska, J.A. Hermann, and T.J. Mckay,
Single-beam Z-scan: measurement techniques and analysis, J.
Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997),
http://dx.doi.org/10.1142/S0218863597000204
[8] E.W. Van Stryland and M. Sheik-Bahae, Z-scan measurements of
optical nonlinearities, in: Characterization Techniques and
Tabulations for Organic Nonlinear Materials, Optical
Engineering Vol. 60, eds. M.G. Kuzyk and C.W. Dirk (Marcel Dekker
Inc., New York, 1998) pp. 655–692,
http://www.amazon.co.uk/Characterization-Techniques-Tabulations-Nonlinear-Engineering/dp/0824799682/
[9] G.L. Wood and E.J. Sharp, Nonlinear Optics, in: Electro-Optics
Handbook, 2nd ed., eds. R.W. Waynant and M.N. Ediger
(McGraw-Hill, New York, 2000) pp. 13.1–13.28,
http://www.amazon.co.uk/Electro-Optics-Handbook-Ronald-Waynant-Marwood/dp/0070687161/
[10] M. Sheik-Bahae and M.P. Hasselbeck, Third-order optical
nonlinearities, in: Handbook of Optics, Vol. IV, 3rd ed.,
ed. M. Bass (McGraw-Hill, New York, 2009) pp. 16.1–16.36,
http://www.amazon.co.uk/Handbook-Optics-Third-Properties-Materials/dp/0071498923/
[11] A. Dement’ev, A. Jovaiša, and R. Navakas, Modified Z-scan
method for determination of nonlinear refraction of optical
materials through the measurement of power-weighted timeaveraged
beam propagation factor, Proc. SPIE 4932, 286–295 (2003),
http://dx.doi.org/10.1117/12.472481
[12] B. Gu, X-Q. Huang, S.-Q. Tan, and H.-T. Wang, A precise data
processing method for extracting (3) from Z-scan
technique, Opt Commun. 277, 209–213 (2007),
http://dx.doi.org/10.1016/j.optcom.2007.05.001
[13] L. Pálfalvi, B.C. Tóth, G. Almási, J.A. Fülöp, and J. Hebling,
A general Z-scan theory, Appl. Phys. B 97, 679–685
(2009),
http://dx.doi.org/10.1007/s00340-009-3656-z
[14] T. Shimada, N.A. Kurnit, and M. Sheik-Bahae, Measurement of
nonlinear index by a relay-imaged top-hat Z-scan technique,
Proc. SPIE 2714, 52–60 (1996),
http://dx.doi.org/10.1117/12.240425
[15] T. Olivier, F. Billard, and H. Akhouayri, Nanosecond Z-scan
measurements of the nonlinear refractive index of fused silica, Opt.
Express 12(7), 1377–1382 (2004),
http://dx.doi.org/10.1364/OPEX.12.001377
[16] A. Dement’ev and A. Jovaisa, Pulse shape influence on the
accuracy of Z-scan measurements, Nonlin. Analysis Model.
Control 10(2), 119–136 (2005),
http://www.lana.lt/journal/17/Dementev.pdf
[17] R. Adair, L.L. Chase, and S.A. Payne, Nonlinear refractive
index of optical crystals, Phys. Rev. B 39(5), 3337–3350
(1989),
http://dx.doi.org/10.1103/PhysRevB.39.3337
[18] A.J. Taylor, G. Rodriguez, and T.S. Clement, Determination of n2
by direct measurement of the optical phase, Opt. Lett. 21(22),
1812–1814 (1996),
http://dx.doi.org/10.1364/OL.21.001812
[19] D. Milam, Review and assessment of measured values of the
nonlinear refractive-index coefficient of fused silica, Appl. Opt. 37(3),
546–550 (1998),
http://dx.doi.org/10.1364/AO.37.000546
[20] J.E. Aber, M.C. Newstein, and B.A. Garetz, Femtosecond optical
Kerr effect measurements in silicate glasses, J. Opt. Soc. Am. B 17(1),
120–127 (2000),
http://dx.doi.org/10.1364/JOSAB.17.000120
[21] Y.-F. Chen, K. Beckwitt, F.W. Wise, B.G. Aitken, J.S. Sanghera,
and I.D. Aggarwal, Measurement of fifth- and seventh-order
nonlinearities of glasses, J. Opt. Soc. Am. B 23(2), 347–352
(2006),
http://dx.doi.org/10.1364/JOSAB.23.000347
[22] A.V. Smith and B.T. Do, Bulk and surface laser damage of silica
by picosecond and nanosecond pulses at 1064 nm, Appl. Opt. 47(26),
4812–4832 (2008),
http://dx.doi.org/10.1364/AO.47.004812
[23] A. Dement’ev, R. Buzelis, E. Kosenko, E. Murauskas, and R.
Navakas, Solid-state lasers with pulse compression by transient
stimulated Brillouin and Raman scattering, Proc. SPIE 4415,
92–97 (2001),
http://dx.doi.org/10.1117/12.425476
[24] S.A. Akhmanov, R.V. Khokhlov, and A.P. Sukhorukov,
Self-focusing, self-defocusing and self- modulation of laser beams,
in: Laser Handbook, Vol. 2, ed. F.T. Arecchi (North-Holland,
1972), pp. 1151–1228,
http://www.amazon.co.uk/Laser-Handbook-v-1-2/dp/0720402131/
[25] V.N. Lugovoy and A.M. Prokhorov, Teoriya rasprostraneniya
moshchnogo lazernogo izlucheniya v nelineynoy srede, Usp. Fiz. Nauk
111(2), 203–247 (1973) [in Russian; English translation: Sov.
Phys. Usp. 16(5), 658 (1974)],
http://dx.doi.org/10.1070/PU1974v016n05ABEH004127
[26] O. Svelto, Self-focusing, self-trapping, and self-phase
modulation of laser beams, in: Progress in Optics, Vol. XII,
ed. E. Wolf (North-Holland, 1974) pp. 1–31
[27] R.W. Hellwarth, Third-order optical susceptibilities of liquids
and solids, Prog. Quantum Electron. 5, 1–68, (1977),
http://dx.doi.org/10.1016/0079-6727(79)90002-8
[28] R.W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press,
2008),
http://www.amazon.co.uk/Nonlinear-Optics-Robert-W-Boyd/dp/0123694701/
[29] A.S. Dement’ev, E.K. Maldutis, and S.V. Sakalauskas, Optical
anisotropy, induced in glasses by intensive laser radiation, Quantum
Electronics (Kiev) 15, 62–76 (1978) [in Russian]
[30] A.S. Dement’ev, E.K. Maldutis, and S.V. Sakalauskas,
Electrostrictive change of refraction index of glasses in elliptical
laser beams, Opt. Spektrosk. [Opt. Spectrosc., in Russian] 50(1),
143149 (1981)
[31] A. Dementjev, D. Steponavičius, and R. Buzelis, Quality
parameters of general astigmatic laser beams and their measurement,
Matavimai Nr. 1(25), 7–13 (2003) [in Lithuanian],
http://internet.ktu.lt/lt/mokslas/zurnalai/matav/z2003/t2003_1a.htm#A.%20Dementjev,%20%20D.%20Steponavi%C4%8Dius,%20%20R.%20Buzelis.
[32] A. Dementjev, R. Navakas, R. Čiegis, and G. Šilko, Analysis of
the ISO alternative measurement methods of laser beam widths and
propagation factors, Matavimai Nr. 4(28), 17–22 (2003) [in
Lithuanian],
http://internet.ktu.lt/lt/mokslas/zurnalai/matav/z2003/t2003_4a.htm#A.%20Dementjev,%20R.%20Navakas,%20R.%20%C4%8Ciegis,%20G.
[33] A.S. Dementjev, A. Jovaisa, G. Silko, and R. Ciegis, On
alternative methods for measuring the radius and propagation ratio
of axially symmetric laser beams, Quant. Electron. 35(11),
1045–1052 (2005),
http://dx.doi.org/10.1070/QE2005v035n11ABEH013034
[34] N.Y. Tabiryan, V. Jonnalagadda, M.J. Mora, and S.R. Nersisyan,
Laser beam and optics characterization with “z-scan” method, Proc.
SPIE 4932, 656–666 (2003),
http://dx.doi.org/10.1117/12.472036