[PDF]
http://dx.doi.org/10.3952/lithjphys.51204
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 91–105 (2011)
SIMULATION OF THERMAL CONVERSION
OF SOLID FUEL BY THE DISCRETE PARTICLE METHOD
B. Peters a, A. Džiugys b, and R. Navakas
b
a Faculté des Sciences, de la Technologie et de la
Communication, Université du Luxembourg, Campus Kirchberg, 6,
rue Coudenhove-Kalergi, L-1359 Luxembourg
E-mail: bernhard.peters@uni.lu
b Laboratory of Combustion Processes, Lithuanian
Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania
E-mail: dziugys@mail.lei.lt
Received 15 April 2011; revised 26
May 2011; accepted 21 June 2011
We introduce the discrete particle
method (DPM) that derives from the discrete element method (DEM).
This is an advanced numerical simulation tool that takes into
account both motion and chemical conversion of granular material,
such as coal or biomass, in furnaces in conjunction with
computational fluid dynamics (CFD). However, predictions of solely
motion or conversion in a decoupled mode are also applicable. The
DPM uses object oriented computational techniques that support
objects representing three-dimensional particles of various
shapes, size, and physical properties of particle material. This
makes DPM a highly versatile tool in dealing with a variety of
problems related to different industrial applications of granular
matter. A review of literature concerning different approaches to
mass and heat transfer in packed beds is presented.
Keywords: discrete particle method
(DPM), numerical modelling, combustion, moving bed, forward acting
grate
PACS: 88.20.jj, 47.70.Pq, 07.05.Tp, 45.10.-b, 46.15.-x,
45.70.Mg
KIETOJO KURO ŠILUMINIŲ VIRSMŲ
MODELIAVIMAS TAIKANT DISKREČIŲJŲ DALELIŲ METODĄ
B. Peters a, A. Džiugys b, R. Navakas b
a Liuksemburgo universitetas, Liuksemburgas
b Lietuvos energetikos institutas, Kaunas,
Lietuva
Aprašytas diskrečiųjų dalelių metodas (DPM),
pagrįstas diskrečiųjų elementų metodu. Tai yra pažangus skaitinio
modeliavimo įrankis, leidžiantis atsižvelgti į granuliuotos
terpės, pvz., anglių ar biomasės, judėjimą ir cheminius virsmus
krosnyse, apimantis ir skaitinę fluidų dinamiką. Taip pat galimas
atskirų procesų – mechaninio judėjimo arba cheminių virsmų –
modeliavimas. Diskrečiųjų dalelių metode pritaikomi objektinio
programavimo principai, vaizduojant įvairių formų, dydžių ir
medžiagos savybių trimates daleles. Tai leidžia modelį plačiai
taikyti įvairiose pramonės srityse, susijusiose su granuliuotų
medžiagų panaudojimu. Pateikta literatūros, susijusios su masės ir
šilumos virsmų granuliuotose terpėse modeliavimu, apžvalga.
References / Nuorodos
[1] E. Smirnov, A. Muzykantov, V. Kuzmin, A. Kronberg, and I.
Zolotarskii, Radial heat transfer in packed beds of spheres,
cylinders and Rashig rings: Verification of model with a linear
variation of er in
the vicinity of the wall, Chem. Eng. J. 91, 243–248 (2003),
http://dx.doi.org/10.1016/S1385-8947(02)00160-2
[2] E.I. Smirnov, V.A. Kuzmin, and I.A. Zolotarskii, Radial thermal
conductivity in cylindrical beds packed by shaped particles, Chem.
Eng. Res. Des. 82(A2), 293–296 (2004),
http://dx.doi.org/10.1205/026387604772992891
[3] I. Figueroa, W.L. Vargas, and J.J. McCarthy, Mixing and heat
conduction in rotating tumblers, Chem. Eng. Sci. 65,
1045–1054 (2010),
http://dx.doi.org/10.1016/j.ces.2009.09.058
[4] O. Laguerre, S.B. Amara, G. Alvarez, and D. Flick, Transient
heat transfer by free convection in a packed bed of spheres:
Comparison between two modelling approaches and experimental
results, Appl. Therm. Eng. 28, 14 –24 (2008),
http://dx.doi.org/10.1016/j.applthermaleng.2007.03.014
[5] O. Laguerre, S.B. Amara, and D. Flick, Heat transfer between
wall and packed bed crossed by low velocity airflow, Appl. Therm.
Eng. 26, 1951–1960 (2006),
http://dx.doi.org/10.1016/j.applthermaleng.2006.01.011
[6] D.C. Swailes and I. Potts, Transient heat transport in gas flow
through granular porous media, Transp. Porous Media 65,
133–157 (2006),
http://dx.doi.org/10.1007/s11242-005-6090-7
[7] G. Venugopal, C. Balaji, and S. Venkateshan, Experimental study
of mixed convection heat transfer in a vertical duct filled with
metallic porous structures, Int. J. Therm. Sci. 49, 340–348
(2010),
http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.018
[8] C.L. Tien, Thermal radiation in packed and fluidized beds,
Trans. ASME J. Heat Transfer 110, 1230–1242 (1988),
http://dx.doi.org/10.1115/1.3250623
[9] S. Manickavasagam and M.P. Menguc, Effective optical properties
of pulverized coal particles determined from FT-IR spectrometer
experiments, Energ. Fuel. 7, 860–869 (1993),
http://dx.doi.org/10.1021/ef00042a023
[10] S.C. Mishra and M. Prasad, Radiative heat transfer in
participating media – A review, Sādhanā 23(2), 213– 232
(1998)
[11] M. Kaviany and B.P. Singh, Radiative heat transfer in packed
beds, in: Heat & Mass Transfer in Porous Media, eds. M.
Quintard and M. Todorovic (Elsevier Pub. Corp., Amsterdam, 1992) pp.
191–202,
http://www.amazon.co.uk/Heat-Mass-Transfer-Porous-Media/dp/0444894985/
[12] J. Thoméo and J.R. Grace, Heat transfer in packed beds:
experimental evaluation of one-phase water flow, Braz. J. Chem. Eng.
21(1), 13–22 (2004),
http://dx.doi.org/10.1590/S0104-66322004000100003
[13] M.A. Fanaei and B.M. Vaziri, Modeling of temperature gradients
in packed-bed solid-state bioreactors, Chem. Eng. Process. 48,
446–451 (2009),
http://dx.doi.org/10.1016/j.cep.2008.06.001
[14] M.F.P. Moreira, M. do Carmo Ferreira, and J.T. Freire,
Evaluation of pseudohomogeneous models for heat transfer in packed
beds with gas flow and gas–liquid cocurrent downflow and upflow,
Chem. Eng. Sci. 61, 2056–2068 (2006),
http://dx.doi.org/10.1016/j.ces.2005.11.003
[15] P. Zehner, Experimentelle und theoretische Bestimmung der
effektiven Wärmeleitfähigkeit durchströmter Kugelschüttungen bei
mäßigen und hohen Temperaturen, VDI-Forschungsheft 558, 35
(1973) [in German]
[16] F.W. Hennecke and E.U. Schlünder, Heat transfer in heated or
cooled tuba with packings of spheres, cylinders and Raschig rings,
Chem. Ing. Tech. 45(5), 277–284 (1973),
http://dx.doi.org/10.1002/cite.330450510
[17] P. Zehner and E.U. Schlünder, Effective thermal conductivity of
spherical packings perfused at moderate and high temperatures, Chem.
Ing. Tech. 45(5), 272–276 (1973),
http://dx.doi.org/10.1002/cite.330450509
[18] J.J. Lerou and G.F. Froment, Estimation of heat transfer
parameters in packed beds from radial temperature profiles, Chem.
Eng. J. (Lausanne) 15(3), 233–237 (1978),
http://dx.doi.org/10.1016/0300-9467(78)80008-2
[19] R. Bauer, Effective radial thermal conductivity of
gas-permeated packed beds containing particles of different shape
and size distribution, VDI Forschungsh. 582, 39 (1977)
[20] A.G. Dixon and D.L. Cresswell, Theoretical prediction of
effective heat transport parameters in packed beds, AIChE J. 25(4),
663–676 (1979),
http://dx.doi.org/10.1002/aic.690250413
[21] H. Hofmann, Fortschritte bei der Modellierung von
Festbettreaktoren, Chem. Ing. Tech. 45(5), 257–265 (1979),
http://dx.doi.org/10.1002/cite.330510403
[22] T. Wellauer, D.L. Cresswell, and E.L. Newson, Heat transfer in
packed bed reactor tubes suitable for selective oxidation, in: Chemical
Reaction Engineering–Boston, ACS Symp. Ser. 196 (American
Chemical Society, 1982) pp. 527–543,
http://dx.doi.org/10.1021/bk-1982-0196.ch041
[23] K.R. Westerterp, W.P.M. van Swaaij, and A.A.C.M. Beenackers, Chemical
Reactor Design and Operation, 2nd ed. (Wiley, Chichester,
1987),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471917303.html
[24] E. Tsotsas and H. Martin, Thermal conductivity of packed beds:
A review, Chem. Eng. Process. 22, 19–37 (1987),
http://dx.doi.org/10.1016/0255-2701(87)80025-9
[25] A.F. Regin, S. Solanki, and J. Saini, An analysis of a packed
bed latent heat thermal energy storage system using PCM capsules:
Numerical investigation, Renew. Energ. 34, 1765–1773 (2009),
http://dx.doi.org/10.1016/j.renene.2008.12.012
[26] S.M.A.G. Ulson de Souza and S. Whitaker, Mass transfer in
porous media with heterogeneous chemical reaction, Braz. J. Chem.
Eng. 20(2) (2003),
http://dx.doi.org/10.1590/S0104-66322003000200013
[27] S. Whitaker, Transport Processes with Heterogeneous Reaction,
in: Concepts and Design of Chemical Reactors, Chemical
Engineering: Concepts and Reviews Vol. 3, eds. S. Whitaker and A.E.
Cassano (Gordon and Breach, New York, 1986),
http://www.amazon.com/Concepts-Chemical-Reactors-Engineering-Reviews/dp/2881241182
[28] S. Whitaker, Volume Averaging of Transport Equations, in: Fluid
Transport in Porous Media, Advances in Fluid Mechanics Vol.
13, ed. J.P. Du Plessis (Computational Mechanics Publications,
Southampton, UK, 1997),
http://www.amazon.co.uk/Fluid-Transport-Porous-Advances-Mechanics/dp/185312429X/
[29] S. Whitaker, The Method of Volume Averaging, Theory and
Application of Transport in Porous Media Vol. 13 (Kluwer Academic,
London, 1999),
http://www.amazon.co.uk/Method-Averaging-Theory-Applications-Transport/dp/0792354869/
[30] M. Quintard and S. Whitaker, Transport in ordered and
disordered porous media I: The cellular average and the use of
weighting functions, Transport Porous Media 14, 163–177
(1994),
http://dx.doi.org/10.1007/BF00615199
[31] M. Quintard and S. Whitaker, Transport in ordered and
disordered porous media II: Generalized volume averaging, Transport
Porous Media 14, 179–206 (1994),
http://dx.doi.org/10.1007/BF00615200
[32] M. Quintard and S. Whitaker, Transport in ordered and
disordered porous media III: Closure and comparison between theory
and experiment, Transport Porous Media 15, 31–49 (1994),
http://dx.doi.org/10.1007/BF01046157
[33] M. Quintard and S. Whitaker, Transport in ordered and
disordered porous media IV: Computer generated porous media,
Transport Porous Media, 15, 51–70 (1994),
http://dx.doi.org/10.1007/BF01046158
[34] M. Quintard and S. Whitaker, Transport in ordered and
disordered porous media V: Geometrical results for two-dimensional
systems, Transport Porous Media 15, 183–196 (1994),
http://dx.doi.org/10.1007/BF01046158
[35] A.L. Negrini, A. Fuelber, J. Freire, and J. Thoméo, Fluid
dynamics of air in a packed bed: velocity profiles and the continuum
model assumption, Braz. J. Chem. Eng. 16(4) (1999),
http://dx.doi.org/10.1590/S0104-66321999000400010
[36] R.W. Fahien and I.M. Stankovic, An equation for the velocity
profile in packed columns, Chem. Eng. Sci. 34, 1350 (1979),
http://dx.doi.org/10.1016/0009-2509(79)80030-5
[37] C.E. Schwartz and J.M. Smith, Flow distribution in packed beds,
Ind. Eng. Chem. 45(6), 1209 (1953),
http://dx.doi.org/10.1021/ie50522a025
[38] D. Vortmeyer and J. Schuster, Evaluation of steady flow
profiles in rectangular and circular packed beds by a variational
method, Chem. Eng. Sci. 38(10), 1691 (1983),
http://dx.doi.org/10.1016/0009-2509(83)85026-X
[39] G.E. Mueller, Prediction of radial porosity distribution in
randomly packed fixed beds of uniformly sized spheres in cylindrical
containers, Chem. Eng. Sci. 46(2), 706 (1991),
http://dx.doi.org/10.1016/0009-2509(91)80032-T
[40] R.F. Benenati and C.B. Brosilow, Void fraction distribution in
beds of spheres, AIChE J. 8(3), 359 (1962),
http://dx.doi.org/10.1002/aic.690080319
[41] D.P. Haughey and G. Beveridge, Local voidage variation in a
randomly packed bed of equal-sized spheres, Chem. Eng. Sci. 21,
905 (1966),
http://dx.doi.org/10.1016/0009-2509(66)85084-4
[42] F.M.Z. Zotin, The Wall Effect in Packed Beds, Master’s
thesis, Universidade Federal de Sao Carlos, Sao Carlos (1985)
[43] V.M.H. Govindarao and G.F. Froment, Voidage profiles in packed
beds of spheres, Chem. Eng. Sci. 41, 533 (1986),
http://dx.doi.org/10.1016/0009-2509(86)87035-X
[44] A.G. Dixon, Correlations for wall and particle shape effects on
fixed-bed bulk voidage, Can. J. Chem. Eng. 66, 705 (1988),
http://dx.doi.org/10.1002/cjce.5450660501
[45] F.M.Z. Zotin, The packing of spheres in a cylindrical
container: the thickness effect, Chem. Eng. Sci. 50(9), 1504
(1995),
http://dx.doi.org/10.1016/0009-2509(94)00483-8
[46] M. Winterberg, E. Tsotas, A. Krischke, and D. Vortmeyer, A
simple and coherent set of coefficients for modelling of heat and
mass transport with and without chemical reaction in tubes filled
with spheres, Chem. Eng. Sci. 55, 967–979 (2000),
http://dx.doi.org/10.1016/S0009-2509(99)00379-6
[47] M. Giese, Strömung in porösen Medien unter Berücksuchtigung
effectiver Viskositäten, Ph.D. thesis, TU München, Germany
(1998)
[48] M. Giese, K. Rottschädel, and D. Vortmeyer, Measured and
modelled superficial flow profiles in packed beds with liquid flow,
AIChE J. 44(2), 484–490 (1998),
http://dx.doi.org/10.1002/aic.690440225
[49] W. Liu, S.W. Peng, and K. Mizukami, A general methematical
modelling for the heat and mass transfer in unsaturated porous
media. An application to free evaporative cooling, Heat Mass Tran. 31,
49–55 (1995),
http://dx.doi.org/10.1007/BF02537421
[50] D. Vortmeyer, Mathematical modelling of reactionand
transferprocesses in the flow through packed beds taking in account
non-homogeneous flow distribution, Wärme- und Stoffübertragung 21,
247–257 (1987),
http://dx.doi.org/10.1007/BF01004027
[51] S. Polesek-Karczewska, Effective thermal conductivity of packed
beds of spheres in transient heat transfer, Heat Mass Tran. 39,
375–380 (2003)
[52] D. Vortmeyer, Axial heat dispersion in packed beds, Chem. Eng.
Sci. 30, 999–1001 (1975),
http://dx.doi.org/10.1016/0009-2509(75)80069-8
[53] E.U. Schlünder, Equivalence of one- and two-phase models for
heat transfer processes in packed beds: one-dimensional theory,
Chem. Eng. Sci. 30, 449–452 (1975),
http://dx.doi.org/10.1016/0009-2509(75)85016-0
[54] G.F. Froment and K.B. Bischoff, Chemical Reactor Analysis
and Design (John Wiley & Sons, 1979)
[55] S.I. Duarte, O.A. Ferretti and N.O. Lemcoff, A heterogeneous
one-dimensional model for non-adiabatic fixed bed catalytic
reactors, Chem. Eng. Sci. 30, 1025–1031 (1984),
http://dx.doi.org/10.1016/0009-2509(84)87011-6
[56] G.C. Glatzmaier and W.F. Ramirez, Use of volume averaging for
the modelling of thermal properties of porous materials, Chem. Eng.
Sci. 30, 3157–3169 (1988),
http://dx.doi.org/10.1016/0009-2509(88)85125-X
[57] J.G. Fourie and J.P. Du Plessis, A two-equation model for heat
conduction in porous media, Transport Porous Media 53,
145–161 (2003),
http://dx.doi.org/10.1023/A:1024098012193
[58] R.J. Wijngaarden and K.R. Westerterp, A heterogeneous model for
heat transfer in packed beds, Chem. Eng. Sci. 48, 1273–l280
(1993),
http://dx.doi.org/10.1016/0009-2509(93)81008-J
[59] D. MacPhee and I. Dincer, Thermal modeling of a packed bed
thermal energy storage system during charging, Appl. Therm. Eng. 29,
695–705 (2009),
http://dx.doi.org/10.1016/j.applthermaleng.2008.03.041
[60] J.J. Lee, G.C. Park, K.Y. Kim, andW.J. Lee, Numerical treatment
of pebble contact in the flow and heat transfer analysis of a pebble
bed reactor core, Nucl. Eng. Des. 237, 2183–2196 (2007),
http://dx.doi.org/10.1016/j.nucengdes.2007.03.046
[61] H. Mei, C. Li, and H. Liu, Simulation of heat transfer and
hydrodynamics for metal structured packed bed, Catal. Today 105,
689–696 (2005),
http://dx.doi.org/10.1016/j.cattod.2005.06.042
[62] J. Yang, Q. Wang, M. Zeng, and A. Nakayama, Computational study
of forced convective heat transfer in structured packed beds with
spherical or ellipsoidal particles, Chem. Eng. Sci. 65,
726–738 (2010),
http://dx.doi.org/10.1016/j.ces.2009.09.026
[63] F. Augier, F. Idoux, and J. Delenne, Numerical simulations of
transfer and transport properties inside packed beds of spherical
particles, Chem. Eng. Sci. 65, 1055–1064 (2010),
http://dx.doi.org/10.1016/j.ces.2009.09.059
[64] K. Papadikis, S. Gu, and A.V. Bridgewater, Computational
modelling of the impact of particle size to the heat transfer
coefficient between biomass particles and a fluidised bed, Fuel
Process. Techn. 91, 68–79 (2010),
http://dx.doi.org/10.1016/j.fuproc.2009.08.016
[65] B.W. Gamson, G. Thodos, and O.A. Hougen, Heat, mass and
momentum transfer in the flow of gases through granular solids,
Trans. Am. Inst. Eng. 39(1), 135 (1943)
[66] A. Zahed and R. Singh, Convective heat transfer coefficient in
a packed bed of rice, JKAU Eng. Sci. 1, 11–20 (1989),
http://dx.doi.org/10.4197/Eng.1-1.2
[67] J. Barker, Heat transfer in packed beds, Ind. Eng. Chem. 57(4),
43–51 (1965),
http://dx.doi.org/10.1021/ie50664a008
[68] T.G. Bowers and H. Reintjes, A review of fluid-toparticle heat
transfer in packed and moving beds, Chem. Eng. Progr. Symp. 57(32),
69–74 (1961)
[69] P. Nithiarasu, K. Seetharamu, and T. Sundararajan, Finite
element modelling of flow, heat and mass transfer in fluid saturated
porous media, Arch. Comput. Meth. Eng. 9(1), 3–42 (2002),
http://dx.doi.org/10.1007/BF02736231
[70] A. Džiugys and B. Peters, An approach to simulate the motion of
spherical and non-spherical fuel particles in combustion chambers,
Granular Matter 3(4), 231–266 (2001),
http://dx.doi.org/10.1007/PL00010918
[71] A. Džiugys and R. Navakas, The role of friction on size
segregation of granular material, Mechanika No. 4(66), 59–68 (2007),
http://internet.ktu.lt/lt/mokslas/zurnalai/mechanika/mech_66/Dziugys466.pdf
[72] A. Džiugys and R. Navakas, The role of friction in mixing and
segregation of granular material, Granular Matter 11(6),
403–416 (2009),
http://dx.doi.org/10.1007/s10035-009-0145-3
[73] P. Chapman, CFD enhances waste combustion design and
modification, in: Combustion Canada ‘96, Ottawa, Ontario,
Canada, June 5–7, 1996
[74] E. Specht, Kinetik der Abbaureaktionen,
Habilitationsschrift, TU Clausthal-Zellerfeld (1993),
http://www.amazon.co.uk/Kinetik-Abbaureaktionen-CUTEC-Schriftenreihe-Monographien-Eckehard/dp/3928815482/
[75] N.M. Laurendeau, Heterogeneous kinetics of coal char
gasification and combustion, Progr. Energ. Combust. Sci. 4,
221 (1978),
http://dx.doi.org/10.1016/0360-1285(78)90008-4
[76] M.A. Elliott, in: Chemistry of Coal Utilization, Suppl.
Vol. 2, Ch. Fundamentals of Coal Combustion (Wiley, New York, 1981)
p. 1153,
http://www.amazon.co.uk/Chemistry-Coal-Utilization-2nd-Suppt/dp/0471077267/
[77] Y.H. Man and R.C. Byeong, A numerical study on the combustion
of a single carbon particle entrained in a steady flow, Combust.
Flame 97, 1–16 (1994),
http://dx.doi.org/10.1016/0010-2180(94)90112-0
[78] J.C. Lee, R.A. Yetter, and F.L. Dryer, Transient numerical
modelling of carbon ignition and oxidation, Combust. Flame 101,
387–398 (1995),
http://dx.doi.org/10.1016/0010-2180(94)00207-9
[79] J.C. Lee, R.A. Yetter and F.L. Dryer, Numerical simulation of
laser ignition of an isolated carbon particle in quiescent
environment, Combust. Flame 105, 591–599 (1996),
http://dx.doi.org/10.1016/0010-2180(96)00221-0
[80] M. Grønli, A Theoretical and Experimental Study of the
Thermal Degradation of Biomass, Ph.D. thesis, The Norwegian
University of Science and Technology Trondheim (1996)
[81] Shih-I Pai, Two-Phase Flows, Vieweg Tracts in Pure and
Applied Physics (Braunschweig, 1977),
http://www.amazon.co.uk/Two-phase-Vieweg-tracts-applied-physics/dp/3528083409/
[82] F.A.L. Dullien, Porous Media: Fluid Transport and Pore
Structure (Academic Press, San Diego, 1979),
http://www.amazon.co.uk/Porous-Media-Fluid-Transport-Structure/dp/0122236505/
[83] M. Kraume, Transportvorgänge in der Verfahrenstechnik
(Springer, 2003),
http://www.springer.com/engineering/mechanical+engineering/book/978-3-642-25148-1
[84] D. Hänel, Molekulare Gasdynamik (Springer, 2004),
http://www.springer.com/engineering/mechanical+engineering/book/978-3-540-44247-9
[85] A. Schönbucher, Thermische Verfahrenstechnik (Springer,
2002),
http://dx.doi.org/10.1007/978-3-642-56308-9
[86] B. Peters, Thermal Conversion of Solid Fuels (WIT
Press, Southampton, 2003),
http://www.amazon.co.uk/Thermal-Conversion-Solid-Developments-Transfer/dp/1853129534/
[87] B. Peters, A. Džiugys, H. Hunsinger, and L. Krebs, An approach
to qualify the intensity of mixing on a forward acting grate, Chem.
Eng. Sci. 60(6), 1649–1659 (2005),
http://dx.doi.org/10.1016/j.ces.2004.11.004