[PDF]
http://dx.doi.org/10.3952/lithjphys.51206
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 163–171 (2011)
SPECTROSCOPIC INVESTIGATIONS OF
CdTe QUANTUM DOT STABILITY IN DIFFERENT AQUEOUS MEDIA
V. Kulvietis a,b, G. Streckytė b, and R.
Rotomskis a,b
a Biomedical Physics Laboratory, Institute of
Oncology of Vilnius University, P. Baublio 3b, LT-08406 Vilnius,
Lithuania
b Biophotonics group of Laser Research Center
of Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: giedre.streckyte@ff.vu.lt
Received 5 May 2011; revised 7 June
2011; accepted 21 June 2011
For the successful use of quantum
dots (QDs) in biomedicine their chemical and optical stability is
of great importance. In this study the changes of
photoluminescence parameters of CdTe QDs coated with
mercaptopropionic acid (MPA) dependently on time and environment
are presented. The presence of salt ions in the QD water solution
decreases photoluminescence band intensity and induces red shift.
The pH value of the solution also influences spectroscopic
properties of QDs. In the pH range from 2.5 to 9 a decrease of
photoluminescence intensity is observed. The fastest one, leading
to the complete luminescence bleaching, occurs in the most acidic
medium. Changes of QD spectral properties in cell growth media
were studied as well. The results imply that spectroscopic changes
of CdTe–MPA QDs are caused by the interactions between the ions
present in the solution and ligand coating of QDs. The model of
possible processes is proposed.
Keywords: quantum dots,
photoluminescence, ions, pH
PACS: 87.64.kv, 87.85.Rs
CdTe KVANTINIŲ TAŠKŲ STABILUMO
VANDENINĖSE TERPĖSE SPEKTROSKOPINIAI TYRIMAI
V. Kulvietis a,b, G. Streckytė b, and R.
Rotomskis a,b
a Vilniaus universiteto Onkologijos institutas,
Vilnius, Lietuva
b Vilniaus universiteto Lazerinių tyrimų
centras, Vilnius, Lietuva
Kvantiniai taškai (KT) yra puslaidininkinės
nanodalelės, pasižyminčios išskirtinėmis optinėmis savybėmis.
Pastaraisiais metais sparčiai plečiasi jų taikymas biologijoje ir
medicinoje. Siekiant sėkmingai taikyti KT įvairiose biomedicinos
srityse, būtina nuodugniai ištirti jų cheminių ir spektrinių
savybių stabilumą įvairiose vandeninėse terpėse. Šiame darbe
spektroskopiniais metodais buvo tirti merkaptopropiono rūgštimi
dengtų CdTe KT fotoliuminescencijos savybių pokyčiai einant laikui
ir keičiantis terpės sudėčiai. Nustatyta, kad tirpale esantys
druskų jonai mažina KT fotoliuminescencijos intensyvumą ir sukelia
ilgabangį emisijos juostos postūmį. Terpės rūgštingumas taip pat
veikia KT spektrines savybes. Kai tirpalo pH < 9, KT
fotoliuminescencijos intensyvumas mažėja. Šis kitimas ypač
išryškėja didėjant vandenilio jonų koncentracijai tirpale. Taip
pat buvo tirti KT spektrinių savybių pokyčiai ląstelių auginimo
terpėse. Gauti rezultatai rodo, kad KT spektrinių savybių pokyčius
lemia tirpaluose esančių jonų sąveika su KT paviršių dengiančiais
ligandais. Pateikiamas galimas šių procesų modelis.
References / Nuorodos
[1] H. Zhang, Z. Zhou, B. Yang, and M. Gao, The influence of
carboxyl groups on the photoluminescence of mercaptocarboxylic
acid-stabilized CdTe nanoparticles, J. Phys. Chem. B 107,
8–13 (2003),
http://dx.doi.org/10.1021/jp025910c
[2] A. Nel, T. Xia, L. Madler, and N. Li, Toxic potential of
materials at the nanolevel, Science 311, 622–627 (2006),
http://dx.doi.org/10.1126/science.1114397
[3] V. Karabanovas, E. Zakarevicius, A. Sukackaite, G. Streckyte,
and R. Rotomskis, Examination of the stability of hydrophobic
(CdSe)ZnS quantum dots in the digestive tract of rats, Photochem.
Photobiol. Sci. 7, 725–729 (2008),
http://dx.doi.org/10.1039/b707920f
[4] R.S.H. Yang, L.W. Chang, J.-P. Wu, M.-H. Tsai, H.-J. Wang, Y.-C.
Kuo, T.-K. Yeh, C.S. Yang, and P. Lin, Persistent tissue kinetics
and redistribution of nanoparticles, quantum dot 705, in mice:
ICP-MS quantitative assessment, Environ. Health Perspect. 115,
1339–1343 (2007),
http://dx.doi.org/10.1289/ehp.10290
[5] J. Lovrić, H.S. Bazzi, Y. Cuie, G.R.A. Fortin, F.M.Winnik, and
D. Maysinger, Differences in subcellular distribution and toxicity
of green and red emitting CdTe quantum dots, J. Mol. Med. 83,
377–385 (2005),
http://dx.doi.org/10.1007/s00109-004-0629-x
[6] J.A.J. Fitzpatrick, S.K. Andreko, L.A. Ernst, A.S. Waggoner, B.
Ballou, and M.P. Bruchez, Long-term persistence and spectral blue
shifting of quantum dots in vivo, Nano Lett. 9, 2736–2741
(2009),
http://dx.doi.org/10.1021/nl901534q
[7] R. Hardman, A toxicologic review of quantum dots: toxicity
depends on physicochemical and enviromental factors, Environ. Health
Perspect. 114, 165–172 (2006),
http://dx.doi.org/10.1289/ehp.8284
[8] K. Boldt, O.T. Bruns, N. Gaponik, and A. Eychmüller, Comparative
examination of the stability of semiconductor quantum dots in
various biochemical buffers, J. Phys. Chem. B 110, 1959–1963
(2006),
http://dx.doi.org/10.1021/jp056371p
[9] A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y.F. Sasaki, T. Ohtaa,
M. Yasuhara, K. Suzuki, and K. Yamamoto, Physicochemical properties
and cellular toxicity of nanocrystal quantum dots depend on their
surface modification, Nano Lett. 4, 2163–2169 (2004),
http://dx.doi.org/10.1021/nl048715d
[10] C. Bullen and P. Mulvaney, The effects of chemisorption on the
luminescence of CdSe quantum dots, Langmuir 22, 3007–3013
(2006),
http://dx.doi.org/10.1021/la051898e
[11] W. Jiang, S. Mardyani, H. Fischer, and W.C.W. Chan, Design and
characterization of lysine cross-linked mercapto-acid biocompatible
quantum dots, Chem. Mater. 18, 872–878 (2006),
http://dx.doi.org/10.1021/cm051393+
[12] M. Gao, S. Kirstein, H. Möhwald, A.L. Rogach, A. Kornowski, A.
Eychmüller, and H.Weller, Strongly photoluminescent CdTe
nanocrystals by proper surface modifications, J. Phys. Chem. B 102,
8360–8363 (1998),
http://dx.doi.org/10.1021/jp9823603
[13] Y.F. Chen and Z. Rosenzweig, Luminescent CdS quantum dots as
selective ion probes, Anal. Chem. 74, 5132–5138 (2002),
http://dx.doi.org/10.1021/ac0258251
[14] D. Yu, Z. Wang, Y. Liu, L. Jin, Y. Cheng, J. Zhou, and S. Cao,
Quantum dot-based pH probe for quick study of enzyme reaction
kinetics, Enzyme Microb. Technol. 41, 127–132 (2007),
http://dx.doi.org/10.1016/j.enzmictec.2006.12.012
[15] J. Yuan, W. Guo, and E. Wang, Investigation of some critical
parameters of buffer conditions for the development of quantum
dots-based optical sensors, Analyt. Chim. Acta 630, 174–180
(2008),
http://dx.doi.org/10.1016/j.aca.2008.10.003
[16] J. Aldana, N. Lavelle, Y. Wang, and X. Peng, Size-dependent
dissociation pH of thiolate ligands from cadmium chalcogenide
nanocrystals, J. Am. Chem. Soc. 127, 2496–2504 (2005),
http://dx.doi.org/10.1021/ja047000+
[17] V. Poderys, M. Matulionyte, A. Selskis, and R. Rotomskis,
Interaction of water-soluble CdTe quantum dots with bovine serum
albumin, Nanoscale Res. Lett. 6, 9 (2010),
http://dx.doi.org/10.1007/s11671-010-9740-9