[PDF]    http://dx.doi.org/10.3952/lithjphys.51208

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 107–126 (2011)

PARALLELISM BETWEEN CHARGE REDISTRIBUTION AND DELOCALIZATION. APPLICATIONS TO ORGANIC REACTIONS
V. Gineitytė
Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: viktorija.gineityte@tfai.vu.lt

Received 1 April 2011; revised 15 June 2011; accepted 21 June 2011

The study is devoted to interrelations between two perturbative expansions for molecules and molecular systems, namely between terms of power series for one-electron density matrices on the one hand, and those for respective representation matrices of non-canonical (localized) molecular orbitals (MOs) on the other hand, as well as to the relevant implications. As the most outstanding example of the latter, simple proportionalities are established between alterations in populations of basis orbitals due to chemical interaction and delocalization coefficients of respective localized MOs (LMOs). The proof of these proportionalities is valid for members of power series to within the fifth order inclusive that were shown previously to be sufficient for investigations of the most important organic reactions. As a result, classical interpretations of early stages of these reactions in terms of shifts of respective localized pairs of electrons (cf. the so-called ‘curly arrow chemistry’) acquire a quantum-chemical support. Moreover, the results of the present study allow comparisons of relative extents of delocalization of LMOs for alternative routes of the same process. On this basis, predominant (allowed) routes of organic reactions are shown to be characterized by enhanced delocalization of respective principal pairs of electrons as compared to alternative (forbidden) routes.
Keywords: localized molecular orbitals, Brillouin theorem, organic reactions, delocalization, curly arrow chemistry
PACS: 31.10.+z, 31.15.Md


KRŪVIO PERSISKIRSTYMO IR DELOKALIZACIJOS TARPUSAVIO ATITIKIMAS IR JO TAIKYMAI ORGANINĖMS REAKCIJOMS TIRTI
V. Gineitytė
Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Krūvio persiskirstymas molekulėse ar molekulinėse sistemose dėl cheminės sąveikos dažnai yra siejamas su atskirų lokalizuotų elektronų porų daline delokalizacija. Klasikinėje chemijoje ši prielaida padeda interpretuojant organinių reakcijų tarpinių būsenų ar produktų santykinius stabilumus. Darbe siekiama pagrįsti tokią sąsają lyginant molekulinių sistemų vienelektronių tankio matricų ir jų nekanoninių (lokalizuotų) molekulinių orbitalių (MO) trikdžių teorijos eilutes tarpfragmentinių sąveikų atžvilgiu. Šiamtikslui apibrėžti vadinamieji lokalizuotųjų MO (LMO) delokalizacijos koeficientai ir nustatytas jų proporcingumas atitinkamų bazinių orbitalių užpildymo skaičių pokyčiams dėl minėtųjų sąveikų tikslumu iki penktos eilės narių imtinai. Gautieji rezultatai pritaikyti interpretuojant pagrindines organines reakcijas. Klasikinės šių reakcijų ankstyvųjų stadijų interpretacijos naudojantis vadinamosiomis lenktosiomis strėliukėmis dabar įgauna kvantmechaninį pagrindą. Be to, skirtingai nuo minėtojo klasikinio interpretacijos būdo, darbe pasiūlytoji metodika įgalina kiekybiškai palyginti alternatyvius tiriamosios reakcijos kelius pagal santykinius LMO delokalizacijos laipsnius. Tuo pagrindu parodyta, kad vyraujantys (leidžiami) reakcijų keliai pasižymi didesne LMO delokalizacija negu kiti (draudžiami) keliai.

References / Nuorodos


[1] Chemical Reactivity and Reaction Paths, ed. G. Klopman (John Wiley and Sons Inc., New York, London, Sydney, Toronto, 1974),
http://www.amazon.co.uk/Chemical-Activity-Reaction-Gilles-Klopman/dp/0471493554/
[2] J. March, Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 3rd ed. (Wiley Interscience, New York, 1985)
[3] F.A. Carroll, Perspectives on Structure and Mechanism in Organic Chemistry, 6th ed. (Brooks/Cole, Pacific Grove, CA, 1996),
http://www.amazon.co.uk/Perspectives-Structure-Mechanism-Organic-Chemistry/dp/0534249485/
[4] H.G.O. Becker, Einfürung in die Elektronentheorie organisch-chemischen Reaktionen (Deutscher Verlag der Wissenschaften, Berlin, 1974)
[5] M. Edenborough, Organic Reaction Mechanisms. A Step by Step Approach, 2nd ed. (Taylor and Francis, London, 1999),
http://www.amazon.co.uk/Organic-Reaction-Mechanisms-Step-Approach/dp/0748406417/
[6] A.S. Dneprovskii and T.I. Temnikova, Theoretical Fundamentals of Organic Chemistry (Khimiya, Leningrad, 1991) [in Russian]
[7] V. Gineityte, J. Mol. Struct. (Theochem) 588, 99 (2002),
http://dx.doi.org/10.1016/S0166-1280(02)00146-X
[8] V. Gineityte, Int. J. Quant. Chem. 94, 302 (2003),
http://dx.doi.org/10.1002/qua.10704
[9] V. Gineityte, Z. Naturforsch. A 64a, 132 (2009),
http://www.znaturforsch.com/aa/v64a/64a0132.pdf
[10] V. Gineityte, J. Mol. Struct. (Theochem) 343, 183 (1995),
http://dx.doi.org/10.1016/0166-1280(95)90555-3
[11] V. Gineityte, J. Mol. Struct. (Theochem) 585, 15 (2002),
http://dx.doi.org/10.1016/S0166-1280(02)00028-3
[12] C. Kaneko, Tetrahedron 28, 4915 (1972),
http://dx.doi.org/10.1016/0040-4020(72)88143-2
[13] S. Zumdahl, Chemical Principles, 5th ed. (Houghton Mifflin, Boston, 2005),
http://www.amazon.co.uk/Chemical-Principles-Steven-S-Zumdahl/dp/0618372067/
[14] G.N. Lewis, J. Am. Chem. Soc. 38, 762 (1916),
http://dx.doi.org/10.1021/ja02261a002
[15] R. McWeeny, Methods in Molecular Quantum Mechanics, 2nd ed. (Academic Press, London, 1989),
http://www.amazon.co.uk/Methods-Molecular-Mechanics-Theoretical-Chemistry/dp/0124865526/
[16] L. Zülicke, Quantenchemie, Bd. 1, Grundlagen und algemeine Methoden (Deutscher Verlag der Wissenschaften, Berlin, 1973)
[17] G.L. Miesler and D.A. Tar, Inorganic Chemistry, 3rd ed. (Pearson Prentice–Hall, Indianapolis, 2003),
http://www.amazon.com/Inorganic-Chemistry-3rd-Gary-Miessler/dp/0130354716/
[18] B.B. Miburo, J. Chem. Educ. 75, 317 (1998),
http://dx.doi.org/10.1021/ed075p317
[19] V. Gineityte, J. Mol. Struct. (Theochem) 810, 91 (2007),
http://dx.doi.org/10.1016/j.theochem.2007.02.002
[20] V.F. Traven, Electronic Structure and Properties of Organic Molecules (Khimiya, Moscow, 1989) [in Russian]
[21] S. Huzinaga, The MO Method (Mir, Moscow, 1983) [in Russian]
[22] F. Jensen, Introduction to Computational Chemistry (John Wiley and Sons, Chichester, 2007),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470011874.html
[23] S. Liu, J.M. Perez-Jorda, and W. Yang, J. Chem. Phys. 112, 1634 (2000),
http://dx.doi.org/10.1063/1.480730
[24] Z. Szekeres and P.R. Surjan, Chem. Phys. Lett. 369, 125 (2003),
http://dx.doi.org/10.1016/S0009-2614(02)01988-7
[25] Localization and Delocalization in Quantum Chemistry, Atoms and Molecules in the Ground State, eds. O. Chalvet, R. Daudel, S. Diner, J.P. Malrieu, Vol. 1 (Reidel, Dordrecht, 1975),
http://www.amazon.com/Localization-Delocalization-Quantum-Chemistry-Molecules/dp/9027705593/
[26] J.P. Daudey, Chem. Phys. Lett. 24, 574 (1974),
http://dx.doi.org/10.1016/0009-2614(74)80185-5
[27] I. Mayer, Chem. Phys. Lett. 89, 390 (1982),
http://dx.doi.org/10.1016/0009-2614(82)80007-9
[28] P.R. Surjan, I. Mayer, and M. Ketesz, J. Chem. Phys. 77, 2454 (1982),
http://dx.doi.org/10.1063/1.444115
[29] I. Mayer and P.R. Surjan, J. Chem. Phys. 80, 5649 (1984),
http://dx.doi.org/10.1063/1.446631
[30] C. Angeli and J.-P. Malrieu, J. Phys. Chem. A 112, 11481 (2008),
http://dx.doi.org/10.1021/jp805870r
[31] J. Rubio, A. Povill, J.-P. Malrieu, and P. Reinhardt, J. Chem. Phys. 107, 10044 (1997),
http://dx.doi.org/10.1063/1.474161
[32] V.A. Kuprievich, Theor. Exp. Chem. 22, 245 (1986),
http://dx.doi.org/10.1007/BF00521148
[33] H. Stoll, G. Wagenblast, and H. Preuß, Theor. Chim. Acta 57, 169 (1980),
http://dx.doi.org/10.1007/BF00574903
[34] A. Fornili, M. Sironi, and M. Raimondi, J. Mol. Struct. (Theochem) 632, 157 (2003),
http://dx.doi.org/10.1016/S0166-1280(03)00296-3
[35] C. Angeli, S. Evangelisti, R. Cimiraglia, and D. Maynau, J. Chem. Phys. 117, 10525 (2002),
http://dx.doi.org/10.1063/1.1521434
[36] N. Guihery, J.-P. Malrieu, and S. Evangelisti, J. Chem. Phys. 119, 11088 (2003),
http://dx.doi.org/10.1063/1.1622925
[37] A. Genoni and M. Sironi, Theor. Chem. Accounts 112, 254 (2004),
http://dx.doi.org/10.1007/s00214-004-0585-0
[38] S. Evangelisti, N. Guihery, T. Leininger, J.-P. Malrieu, D. Maynau, J.-V.P. Ruiz, N. Suaud, C. Angeli, R. Cimiraglia, and C.J. Calzado, J. Mol. Struct. (Theochem) 709, 1 (2004),
http://dx.doi.org/10.1016/j.theochem.2003.12.054
[39] J.-V.P. Ruiz, S. Evangelisti, and D. Maynau, Future Generat. Comput. Syst. 20, 821 (2004),
http://dx.doi.org/10.1016/j.future.2003.11.021
[40] J.J.P. Stewart, Int. J. Quant. Chem. 58, 133 (1996),
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z
[41] V. Gineityte, J. Mol. Struct. (Theochem) 288, 111 (1993),
http://dx.doi.org/10.1016/0166-1280(93)90100-P
[42] V. Gineityte, J. Mol. Struct. (Theochem) 333, 297 (1995),
http://dx.doi.org/10.1016/0166-1280(94)03934-D
[43] S.F. Boys, Rev. Mod. Phys. 32, 296 (1960),
http://dx.doi.org/10.1103/RevModPhys.32.296
[44] C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 34, 457 (1963),
http://dx.doi.org/10.1103/RevModPhys.35.457
[45] C. Edmiston and K. Ruedenberg, J. Chem. Phys. 43, S97 (1965),
http://dx.doi.org/10.1063/1.1701520
[46] J. Pipek and P.G. Mezey, J. Chem. Phys. 90, 4916 (1989),
http://dx.doi.org/10.1063/1.456588
[47] M.M. Mestetchkin, The Density Matrix Method in Quantum Chemistry (Naukova Dumka, Kiev, 1977) [in Russian]
[48] V. Gineityte, Int. J. Quant. Chem. 68, 119 (1998),
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)68:2<119::AID-QUA4>3.0.CO;2-Y
[49] V. Gineityte, Lith. J. Phys. 44, 219 (2004),
http://dx.doi.org/10.3952/lithjphys.44304
[50] L.D. Landau and E.M. Lifshits, Quantum Mechanics (Non-relativistic Theory), 3rd ed. (Butterworth-Heinemann, Oxford, 1977),
http://www.amazon.co.uk/Quantum-Mechanics-Non-Relativistic-Theory-v/dp/0750635398/
[51] V. Gineityte, Int. J. Quant. Chem. 72, 559 (1999),
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)72:6<559::AID-QUA3>3.0.CO;2-C
[52] V. Gineityte, J. Mol. Struct. (Theochem) 546, 107 (2001),
http://dx.doi.org/10.1016/S0166-1280(01)00433-X
[53] V. Gineityte, Int. J. Quant. Chem. 108, 1141 (2008),
http://dx.doi.org/10.1002/qua.21601
[54] J.M. Tedder and A. Nechvatal, Pictorial Orbital Theory (Pitman, London 1985),
http://www.amazon.co.uk/Pictorial-Orbital-Theory-J-M-Tedder/dp/0273019023/
[55] M.J.S. Dewar and R.C. Dougherty, The PMO Theory of Organic Chemistry (Plenum Press, New York, 1975),
http://www.amazon.co.uk/Pmo-Theory-Organic-Chemistry/dp/0306307790/
[56] V. Gineityte, J. Mol. Struct. (Theochem) 541, 1 (2001),
http://dx.doi.org/10.1016/S0166-1280(00)00628-X
[57] C.K. Ingold, Structure and Mechanism in Organic Chemistry (Cornell University Press, Ithaca, 1953)
[58] V.I. Minkin, B.J. Simkin, and R.M. Mineev, Teoriya stroeniya molekul (Vysshaya Shkola, Moscow, 1979) [Theory of Molecular Structure, in Russian]
[59] A.R. Katritzky and C.D. Johnson, Angew. Chem. Int. Ed. 6, 608 (1967),
http://dx.doi.org/10.1002/anie.196706081
[60] V. Gineityte, J. Mol. Struct. (Theochem) 760, 229 (2006),
http://dx.doi.org/10.1016/j.theochem.2005.12.018
[61] V. Gineityte, J. Mol. Struct. (Theochem) 726, 205 (2005),
http://dx.doi.org/10.1016/j.theochem.2005.02.057
[62] V. Gineityte, J. Mol. Struct. (Theochem) 714, 157 (2005),
http://dx.doi.org/10.1016/j.theochem.2004.08.049
[63] V. Gineityte, J. Mol. Struct. (Theochem) 487, 231 (1999),
http://dx.doi.org/10.1016/S0166-1280(98)00600-9
[64] P. Lancaster, Theory of Matrices (Academic Press, New York, 1969),
http://www.amazon.co.uk/Theory-Matrices-P-Lancaster/dp/0124355501/
[65] V. Gineityte, Lith. J. Phys. 42, 397 (2002)
[66] V. Gineityte, Int. J. Quant. Chem. 77, 534 (2000),
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:2<534::AID-QUA5>3.0.CO;2-P