[PDF]
http://dx.doi.org/10.3952/lithjphys.51208
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 107–126 (2011)
PARALLELISM BETWEEN CHARGE
REDISTRIBUTION AND DELOCALIZATION. APPLICATIONS TO ORGANIC
REACTIONS
V. Gineitytė
Institute of Theoretical Physics and Astronomy, Vilnius
University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: viktorija.gineityte@tfai.vu.lt
Received 1 April 2011; revised 15
June 2011; accepted 21 June 2011
The study is devoted to
interrelations between two perturbative expansions for molecules
and molecular systems, namely between terms of power series for
one-electron density matrices on the one hand, and those for
respective representation matrices of non-canonical (localized)
molecular orbitals (MOs) on the other hand, as well as to the
relevant implications. As the most outstanding example of the
latter, simple proportionalities are established between
alterations in populations of basis orbitals due to chemical
interaction and delocalization coefficients of respective
localized MOs (LMOs). The proof of these proportionalities is
valid for members of power series to within the fifth order
inclusive that were shown previously to be sufficient for
investigations of the most important organic reactions. As a
result, classical interpretations of early stages of these
reactions in terms of shifts of respective localized pairs of
electrons (cf. the so-called ‘curly arrow chemistry’) acquire a
quantum-chemical support. Moreover, the results of the present
study allow comparisons of relative extents of delocalization of
LMOs for alternative routes of the same process. On this basis,
predominant (allowed) routes of organic reactions are shown to be
characterized by enhanced delocalization of respective principal
pairs of electrons as compared to alternative (forbidden) routes.
Keywords: localized molecular orbitals,
Brillouin theorem, organic reactions, delocalization, curly arrow
chemistry
PACS: 31.10.+z, 31.15.Md
KRŪVIO PERSISKIRSTYMO IR
DELOKALIZACIJOS TARPUSAVIO ATITIKIMAS IR JO TAIKYMAI ORGANINĖMS
REAKCIJOMS TIRTI
V. Gineitytė
Vilniaus universiteto Teorinės fizikos ir astronomijos
institutas, Vilnius, Lietuva
Krūvio persiskirstymas molekulėse ar
molekulinėse sistemose dėl cheminės sąveikos dažnai yra siejamas
su atskirų lokalizuotų elektronų porų daline delokalizacija.
Klasikinėje chemijoje ši prielaida padeda interpretuojant
organinių reakcijų tarpinių būsenų ar produktų santykinius
stabilumus. Darbe siekiama pagrįsti tokią sąsają lyginant
molekulinių sistemų vienelektronių tankio matricų ir jų
nekanoninių (lokalizuotų) molekulinių orbitalių (MO) trikdžių
teorijos eilutes tarpfragmentinių sąveikų atžvilgiu. Šiamtikslui
apibrėžti vadinamieji lokalizuotųjų MO (LMO) delokalizacijos
koeficientai ir nustatytas jų proporcingumas atitinkamų bazinių
orbitalių užpildymo skaičių pokyčiams dėl minėtųjų sąveikų
tikslumu iki penktos eilės narių imtinai. Gautieji rezultatai
pritaikyti interpretuojant pagrindines organines reakcijas.
Klasikinės šių reakcijų ankstyvųjų stadijų interpretacijos
naudojantis vadinamosiomis lenktosiomis strėliukėmis dabar įgauna
kvantmechaninį pagrindą. Be to, skirtingai nuo minėtojo klasikinio
interpretacijos būdo, darbe pasiūlytoji metodika įgalina
kiekybiškai palyginti alternatyvius tiriamosios reakcijos kelius
pagal santykinius LMO delokalizacijos laipsnius. Tuo pagrindu
parodyta, kad vyraujantys (leidžiami) reakcijų keliai pasižymi
didesne LMO delokalizacija negu kiti (draudžiami) keliai.
References / Nuorodos
[1] Chemical Reactivity and Reaction Paths, ed. G. Klopman
(John Wiley and Sons Inc., New York, London, Sydney, Toronto, 1974),
http://www.amazon.co.uk/Chemical-Activity-Reaction-Gilles-Klopman/dp/0471493554/
[2] J. March, Advanced Organic Chemistry, Reactions, Mechanisms
and Structure, 3rd ed. (Wiley Interscience, New York, 1985)
[3] F.A. Carroll, Perspectives on Structure and Mechanism in
Organic Chemistry, 6th ed. (Brooks/Cole, Pacific Grove, CA,
1996),
http://www.amazon.co.uk/Perspectives-Structure-Mechanism-Organic-Chemistry/dp/0534249485/
[4] H.G.O. Becker, Einfürung in die Elektronentheorie
organisch-chemischen Reaktionen (Deutscher Verlag der
Wissenschaften, Berlin, 1974)
[5] M. Edenborough, Organic Reaction Mechanisms. A Step by Step
Approach, 2nd ed. (Taylor and Francis, London, 1999),
http://www.amazon.co.uk/Organic-Reaction-Mechanisms-Step-Approach/dp/0748406417/
[6] A.S. Dneprovskii and T.I. Temnikova, Theoretical
Fundamentals of Organic Chemistry (Khimiya, Leningrad, 1991)
[in Russian]
[7] V. Gineityte, J. Mol. Struct. (Theochem) 588, 99 (2002),
http://dx.doi.org/10.1016/S0166-1280(02)00146-X
[8] V. Gineityte, Int. J. Quant. Chem. 94, 302 (2003),
http://dx.doi.org/10.1002/qua.10704
[9] V. Gineityte, Z. Naturforsch. A 64a, 132 (2009),
http://www.znaturforsch.com/aa/v64a/64a0132.pdf
[10] V. Gineityte, J. Mol. Struct. (Theochem) 343, 183
(1995),
http://dx.doi.org/10.1016/0166-1280(95)90555-3
[11] V. Gineityte, J. Mol. Struct. (Theochem) 585, 15
(2002),
http://dx.doi.org/10.1016/S0166-1280(02)00028-3
[12] C. Kaneko, Tetrahedron 28, 4915 (1972),
http://dx.doi.org/10.1016/0040-4020(72)88143-2
[13] S. Zumdahl, Chemical Principles, 5th ed. (Houghton
Mifflin, Boston, 2005),
http://www.amazon.co.uk/Chemical-Principles-Steven-S-Zumdahl/dp/0618372067/
[14] G.N. Lewis, J. Am. Chem. Soc. 38, 762 (1916),
http://dx.doi.org/10.1021/ja02261a002
[15] R. McWeeny, Methods in Molecular Quantum Mechanics, 2nd
ed. (Academic Press, London, 1989),
http://www.amazon.co.uk/Methods-Molecular-Mechanics-Theoretical-Chemistry/dp/0124865526/
[16] L. Zülicke, Quantenchemie, Bd. 1, Grundlagen und
algemeine Methoden (Deutscher Verlag der Wissenschaften,
Berlin, 1973)
[17] G.L. Miesler and D.A. Tar, Inorganic Chemistry, 3rd ed.
(Pearson Prentice–Hall, Indianapolis, 2003),
http://www.amazon.com/Inorganic-Chemistry-3rd-Gary-Miessler/dp/0130354716/
[18] B.B. Miburo, J. Chem. Educ. 75, 317 (1998),
http://dx.doi.org/10.1021/ed075p317
[19] V. Gineityte, J. Mol. Struct. (Theochem) 810, 91
(2007),
http://dx.doi.org/10.1016/j.theochem.2007.02.002
[20] V.F. Traven, Electronic Structure and Properties of Organic
Molecules (Khimiya, Moscow, 1989) [in Russian]
[21] S. Huzinaga, The MO Method (Mir, Moscow, 1983) [in
Russian]
[22] F. Jensen, Introduction to Computational Chemistry
(John Wiley and Sons, Chichester, 2007),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470011874.html
[23] S. Liu, J.M. Perez-Jorda, and W. Yang, J. Chem. Phys. 112,
1634 (2000),
http://dx.doi.org/10.1063/1.480730
[24] Z. Szekeres and P.R. Surjan, Chem. Phys. Lett. 369, 125
(2003),
http://dx.doi.org/10.1016/S0009-2614(02)01988-7
[25] Localization and Delocalization in Quantum Chemistry, Atoms
and Molecules in the Ground State, eds. O. Chalvet, R. Daudel,
S. Diner, J.P. Malrieu, Vol. 1 (Reidel, Dordrecht, 1975),
http://www.amazon.com/Localization-Delocalization-Quantum-Chemistry-Molecules/dp/9027705593/
[26] J.P. Daudey, Chem. Phys. Lett. 24, 574 (1974),
http://dx.doi.org/10.1016/0009-2614(74)80185-5
[27] I. Mayer, Chem. Phys. Lett. 89, 390 (1982),
http://dx.doi.org/10.1016/0009-2614(82)80007-9
[28] P.R. Surjan, I. Mayer, and M. Ketesz, J. Chem. Phys. 77,
2454 (1982),
http://dx.doi.org/10.1063/1.444115
[29] I. Mayer and P.R. Surjan, J. Chem. Phys. 80, 5649
(1984),
http://dx.doi.org/10.1063/1.446631
[30] C. Angeli and J.-P. Malrieu, J. Phys. Chem. A 112,
11481 (2008),
http://dx.doi.org/10.1021/jp805870r
[31] J. Rubio, A. Povill, J.-P. Malrieu, and P. Reinhardt, J. Chem.
Phys. 107, 10044 (1997),
http://dx.doi.org/10.1063/1.474161
[32] V.A. Kuprievich, Theor. Exp. Chem. 22, 245 (1986),
http://dx.doi.org/10.1007/BF00521148
[33] H. Stoll, G. Wagenblast, and H. Preuß, Theor. Chim. Acta 57,
169 (1980),
http://dx.doi.org/10.1007/BF00574903
[34] A. Fornili, M. Sironi, and M. Raimondi, J. Mol. Struct.
(Theochem) 632, 157 (2003),
http://dx.doi.org/10.1016/S0166-1280(03)00296-3
[35] C. Angeli, S. Evangelisti, R. Cimiraglia, and D. Maynau, J.
Chem. Phys. 117, 10525 (2002),
http://dx.doi.org/10.1063/1.1521434
[36] N. Guihery, J.-P. Malrieu, and S. Evangelisti, J. Chem. Phys. 119,
11088 (2003),
http://dx.doi.org/10.1063/1.1622925
[37] A. Genoni and M. Sironi, Theor. Chem. Accounts 112, 254
(2004),
http://dx.doi.org/10.1007/s00214-004-0585-0
[38] S. Evangelisti, N. Guihery, T. Leininger, J.-P. Malrieu, D.
Maynau, J.-V.P. Ruiz, N. Suaud, C. Angeli, R. Cimiraglia, and C.J.
Calzado, J. Mol. Struct. (Theochem) 709, 1 (2004),
http://dx.doi.org/10.1016/j.theochem.2003.12.054
[39] J.-V.P. Ruiz, S. Evangelisti, and D. Maynau, Future Generat.
Comput. Syst. 20, 821 (2004),
http://dx.doi.org/10.1016/j.future.2003.11.021
[40] J.J.P. Stewart, Int. J. Quant. Chem. 58, 133 (1996),
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z
[41] V. Gineityte, J. Mol. Struct. (Theochem) 288, 111
(1993),
http://dx.doi.org/10.1016/0166-1280(93)90100-P
[42] V. Gineityte, J. Mol. Struct. (Theochem) 333, 297
(1995),
http://dx.doi.org/10.1016/0166-1280(94)03934-D
[43] S.F. Boys, Rev. Mod. Phys. 32, 296 (1960),
http://dx.doi.org/10.1103/RevModPhys.32.296
[44] C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 34, 457
(1963),
http://dx.doi.org/10.1103/RevModPhys.35.457
[45] C. Edmiston and K. Ruedenberg, J. Chem. Phys. 43, S97
(1965),
http://dx.doi.org/10.1063/1.1701520
[46] J. Pipek and P.G. Mezey, J. Chem. Phys. 90, 4916
(1989),
http://dx.doi.org/10.1063/1.456588
[47] M.M. Mestetchkin, The Density Matrix Method in Quantum
Chemistry (Naukova Dumka, Kiev, 1977) [in Russian]
[48] V. Gineityte, Int. J. Quant. Chem. 68, 119 (1998),
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)68:2<119::AID-QUA4>3.0.CO;2-Y
[49] V. Gineityte, Lith. J. Phys. 44, 219 (2004),
http://dx.doi.org/10.3952/lithjphys.44304
[50] L.D. Landau and E.M. Lifshits, Quantum Mechanics
(Non-relativistic Theory), 3rd ed. (Butterworth-Heinemann,
Oxford, 1977),
http://www.amazon.co.uk/Quantum-Mechanics-Non-Relativistic-Theory-v/dp/0750635398/
[51] V. Gineityte, Int. J. Quant. Chem. 72, 559 (1999),
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)72:6<559::AID-QUA3>3.0.CO;2-C
[52] V. Gineityte, J. Mol. Struct. (Theochem) 546, 107
(2001),
http://dx.doi.org/10.1016/S0166-1280(01)00433-X
[53] V. Gineityte, Int. J. Quant. Chem. 108, 1141 (2008),
http://dx.doi.org/10.1002/qua.21601
[54] J.M. Tedder and A. Nechvatal, Pictorial Orbital Theory
(Pitman, London 1985),
http://www.amazon.co.uk/Pictorial-Orbital-Theory-J-M-Tedder/dp/0273019023/
[55] M.J.S. Dewar and R.C. Dougherty, The PMO Theory of Organic
Chemistry (Plenum Press, New York, 1975),
http://www.amazon.co.uk/Pmo-Theory-Organic-Chemistry/dp/0306307790/
[56] V. Gineityte, J. Mol. Struct. (Theochem) 541, 1 (2001),
http://dx.doi.org/10.1016/S0166-1280(00)00628-X
[57] C.K. Ingold, Structure and Mechanism in Organic Chemistry
(Cornell University Press, Ithaca, 1953)
[58] V.I. Minkin, B.J. Simkin, and R.M. Mineev, Teoriya
stroeniya molekul (Vysshaya Shkola, Moscow, 1979) [Theory
of Molecular Structure, in Russian]
[59] A.R. Katritzky and C.D. Johnson, Angew. Chem. Int. Ed. 6,
608 (1967),
http://dx.doi.org/10.1002/anie.196706081
[60] V. Gineityte, J. Mol. Struct. (Theochem) 760, 229
(2006),
http://dx.doi.org/10.1016/j.theochem.2005.12.018
[61] V. Gineityte, J. Mol. Struct. (Theochem) 726, 205
(2005),
http://dx.doi.org/10.1016/j.theochem.2005.02.057
[62] V. Gineityte, J. Mol. Struct. (Theochem) 714, 157
(2005),
http://dx.doi.org/10.1016/j.theochem.2004.08.049
[63] V. Gineityte, J. Mol. Struct. (Theochem) 487, 231
(1999),
http://dx.doi.org/10.1016/S0166-1280(98)00600-9
[64] P. Lancaster, Theory of Matrices (Academic Press, New
York, 1969),
http://www.amazon.co.uk/Theory-Matrices-P-Lancaster/dp/0124355501/
[65] V. Gineityte, Lith. J. Phys. 42, 397 (2002)
[66] V. Gineityte, Int. J. Quant. Chem. 77, 534 (2000),
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:2<534::AID-QUA5>3.0.CO;2-P