[PDF]    http://dx.doi.org/10.3952/lithjphys.51306

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 207–211 (2011)


UV SPECTRAL FEATURES OF POLY(PROPYLENE IMINE) DENDRIMERS
M. Franckevičius a, J. Tamulienė b, J. Babonas c, I. Šimkienė c, L. Rastenienė a, A. Kulbickas a, A. Iržikevičius a, and R. Vaišnoras a
a Liquid Crystals Laboratory, Vilnius Pedagogical University, Studentų 39, LT-08601 Vilnius, Lithuania
E-mail: marius.franckevicius@vpu.lt
b Vilnius University Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
c Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania

Received 21 February 2011; revised 2 September 2011; accepted 21 September 2011

The UV optical spectra of amine terminated poly(propylene-imine) (PPI) dendrimers of generations G1 to G5 were investigated experimentally. The occurrence of double band at 270–290 nm in absorption spectra of amine terminated dendrimer and the dependence of the spectra on the generation number and concentration in dichloromethane solution were discussed. The lineshape of double band was similar in the sequence G1 to G5, though some redistribution of the intensity of components was observed. A linear dependence of the absorbance in the double band was determined in the solutions at low concentrations of order 1·10−5 M. Experimental data have indicated that double band is caused by several optical transitions related to the core electronic excitations. A significant Rayleigh light scattering was found for higher dendrimer generations.
Keywords: PPI NH2-terminated dendrimers, optical absorbance, light scattering
PACS: 33.15.Bh, 33.20.Lg


POLI(PROPILENO-IMINO) DENDRIMERŲ UV SPEKTRŲ SAVYBĖS
M. Franckevičius a, J. Tamulienė b, J. Babonas c, I. Šimkienė c, L. Rastenienė a, A. Kulbickas a, A. Iržikevičius a, R. Vaišnoras a
a Vilniaus pedagoginio universiteto Skystųjų kristalų laboratorija, Vilnius, Lietuva
b Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
c Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Ištirti įvairių generacijų (G1...G5) poli(propileno-imino) (PPI) dendrimerų, funkcionalizuotų aminogrupėmis, tirpalų dichlorometane sugerties spektrai. Nustatyta būdinga visiems ištirtiems junginiams dviguba juosta ties 270–290 nm ir jos kitimas priklausomai nuo dendrimerų generacijos ir tirpalo koncentracijos. Gauta, kad sugertis priklausė tiesiškai nuo dendrimero molinės koncentracijos tirpale, esant nedidelėms 1·10−5 M koncentracijoms. Aukštesnės generacijos (G3...G5) dendrimerų tirpalai pasižymėjo didele sklaida, kuri atitiko Rayleigh sklaidos dėsningumus.

References / Nuorodos

[1] F. Vögtle, G. Richardt, and N. Werner, Dendrimer Chemistry: Concepts, Synthesis, Properties, Applications (Wiley–VCH, Weinheim, 2009) ch. 3,
http://dx.doi.org/10.1002/9783527626953
[2] L. Pastor, J. Barberá, M. Mckenna, M. Marcos, R. Martín-Rapún, J.L. Serrano, G.R. Luckhurst, and A. Mainal, End-on and side-on nematic liquid crystal dendrimers, Macromolecules 37, 9386–9394 (2004),
http://dx.doi.org/10.1021/ma048450p
[3] M. Franckevičius, R. Vaišnoras, M. Marcos, J.L. Serrano, R. Karpicz, and V. Gulbinas, Excited-state relaxation of dendrimers functionalized with cyanoazobenzene-type terminal groups, Chem. Phys. Lett. 485, 156–160 (2010),
http://dx.doi.org/10.1016/j.cplett.2009.12.028
[4] T. Pietsch, D. Appelhans, N. Gindy, B. Voit, and A. Fahmi, Oligosaccharide-modified dendrimers for templating gold nanoparticles: Tailoring the particle size as a function of dendrimer generation and molecular structure, Colloids Surf. A 341, 93–102 (2009),
http://dx.doi.org/10.1016/j.colsurfa.2009.03.044
[5] M. Liu and J.M.J. Fréchet, Design dendrimers for drug delivery, Pharm. Sci. Technol. Today 2, 393–401 (1999),
http://dx.doi.org/10.1016/S1461-5347(99)00203-5
[6] Non-viral Gene Therapy: Gene Design and Delivery, eds. K. Taira, K. Kataoka, and T. Niidome (Springer Verlag, Tokyo, 2005) ch. 1,
http://www.springer.com/life+sciences/cell+biology/book/978-4-431-25122-4
[7] V. Butkus, D. Abramavicius, A. Gelzinis, and L. Valkunas, Two-dimensional optical spectroscopy of molecular aggregates, Lith. J. Phys. 50, 267–303 (2010),
http://dx.doi.org/10.3952/lithjphys.50305
[8] G. Seniutinas, L. Laipniece, J. Kreicberga, V. Kampars, J. Gražulevičius, R. Petruškevičius, and R. Tomašiūnas, Orientational relaxation of three different dendrimers in polycarbonate matrix investigated by optical poling, J. Opt. A 11, 034003–034009 (2009),
http://dx.doi.org/10.1088/1464-4258/11/3/034003
[9] B.-K. An, R. Mulherin, B. Langley, P. Burn, and P. Meredith, Ruthenium complex-cored dendrimers: Shedding light on efficiency trade-offs in dyesensitised solar cells, Org. Electron. 10, 1356–1363 (2009),
http://dx.doi.org/10.1016/j.orgel.2009.07.017
[10] T. Nakashima, N. Satoh, K. Albrecht, and K. Yamamoto, Interface modification on TiO2 electrode using dendrimers in dye-sensitized solar cells, Chem. Mater. 20, 2538–2543 (2008),
http://dx.doi.org/10.1021/cm703279u
[11] E. Badaeva, M.R. Harpham, R. Guda, Özgün Süzer, Ch.-Qi Ma, P. Bäuerle, T. Goodson III, and S. Tretiak, Excited-state structure of oligothiophene dendrimers: computational and experimental study, J. Phys. Chem. B 114, 15808–15817 (2010),
http://dx.doi.org/10.1021/jp109624d
[12] A. Kulbickas, J. Tamuliene, L. Rasteniene, M. Franckevicius, R. Vaisnoras, M. Marcos, J.L. Serrano, B. Jaskorzynska, and L. Wosinski, Optical study and structure modelling of PPI liquid crystalline dendrimer derivatives, Photonics Nanostr. 5, 178–183 (2007),
http://dx.doi.org/10.1016/j.photonics.2007.06.003
[13] R.C. van Duijvenbode, M. Borkovec, and G.J.M. Koper, Acid-base properties of poly(propylene imine)dendrimers, Polymer 39, 2657–2664 (1998),
http://dx.doi.org/10.1016/S0032-3861(97)00573-9
[14] M.J. Jasmine, M. Kavitha, and E. Prasad, Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers, J. Lumin. 129, 506–513 (2009),
http://dx.doi.org/10.1016/j.jlumin.2008.12.005
[15] I.B. Rietveld and D. Bedeaux, The viscosity of solutions of poly(propylene imine) dendrimers in methanol, J. Colloid Interf. Sci. 235, 89–92 (2001),
http://dx.doi.org/10.1006/jcis.2000.7250
[16] J. Gregorowicz and M. Luszczyk, Impact of water on the miscibility of DAB-dendr-(NH2)64 and benzene, Macromolecules 40, 5966–5972 (2007),
http://dx.doi.org/10.1021/ma062860r
[17] C.F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, New York, 1983),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471293407.html
[18] R. Scherrenberg, B. Coussens, P. van Vliet, G. Edouard, J. Brackman, E. de Brabander, and K. Mortensen, The molecular characteristics of poly(propyleneimine) dendrimers as studied with small-angle neutron scattering, viscosimetry, and molecular dynamics, Macromolecules 31, 456–461 (1998),
http://dx.doi.org/10.1021/ma9618181
[19] P. Laven, MiePlot program, available at
http://www.philiplaven.com/MiePlot.htm
[20] M.F. Budyka, T.N. Gavrishova, and O.D. Laukhina, Spectral and photochemical properties of bifunctional compounds and their complexes. 2. Photocyclization of α,ω\alpha , \omega-bis(diphenylamino)alkanes to α,ω\alpha , \o-di(carbazolyl)alkanes, Russ. Chem. Bull. 48, 1491–1496 (1999),
http://dx.doi.org/10.1007/BF02496398