[PDF]
http://dx.doi.org/10.3952/lithjphys.51306
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 207–211 (2011)
UV SPECTRAL FEATURES OF
POLY(PROPYLENE IMINE) DENDRIMERS
M. Franckevičius a, J. Tamulienė b, J.
Babonas c, I. Šimkienė c, L. Rastenienė
a, A. Kulbickas a, A. Iržikevičius a,
and R. Vaišnoras a
a Liquid Crystals Laboratory, Vilnius Pedagogical
University, Studentų 39, LT-08601 Vilnius, Lithuania
E-mail: marius.franckevicius@vpu.lt
b Vilnius University Institute of Theoretical
Physics and Astronomy, A. Goštauto 12, LT-01108 Vilnius,
Lithuania
c Semiconductor Physics Institute, Center for
Physical Sciences and Technology, A. Goštauto 11, LT-01108
Vilnius, Lithuania
Received 21 February 2011; revised
2 September 2011; accepted 21 September 2011
The UV optical spectra of amine
terminated poly(propylene-imine) (PPI) dendrimers of generations
G1 to G5 were investigated experimentally. The occurrence of
double band at 270–290 nm in absorption spectra of amine
terminated dendrimer and the dependence of the spectra on the
generation number and concentration in dichloromethane solution
were discussed. The lineshape of double band was similar in the
sequence G1 to G5, though some redistribution of the intensity of
components was observed. A linear dependence of the absorbance in
the double band was determined in the solutions at low
concentrations of order 1·10−5 M. Experimental data
have indicated that double band is caused by several optical
transitions related to the core electronic excitations. A
significant Rayleigh light scattering was found for higher
dendrimer generations.
Keywords: PPI NH2-terminated
dendrimers, optical absorbance, light scattering
PACS: 33.15.Bh, 33.20.Lg
POLI(PROPILENO-IMINO) DENDRIMERŲ
UV SPEKTRŲ SAVYBĖS
M. Franckevičius a, J. Tamulienė b, J.
Babonas c, I. Šimkienė c, L. Rastenienė
a, A. Kulbickas a, A. Iržikevičius a,
R. Vaišnoras a
a Vilniaus pedagoginio universiteto Skystųjų
kristalų laboratorija, Vilnius, Lietuva
b Vilniaus universiteto Teorinės fizikos ir
astronomijos institutas, Vilnius, Lietuva
c Fizinių ir technologijos mokslų centro
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Ištirti įvairių generacijų (G1...G5)
poli(propileno-imino) (PPI) dendrimerų, funkcionalizuotų
aminogrupėmis, tirpalų dichlorometane sugerties spektrai.
Nustatyta būdinga visiems ištirtiems junginiams dviguba juosta
ties 270–290 nm ir jos kitimas priklausomai nuo dendrimerų
generacijos ir tirpalo koncentracijos. Gauta, kad sugertis
priklausė tiesiškai nuo dendrimero molinės koncentracijos tirpale,
esant nedidelėms 1·10−5 M koncentracijoms. Aukštesnės
generacijos (G3...G5) dendrimerų tirpalai pasižymėjo didele
sklaida, kuri atitiko Rayleigh sklaidos dėsningumus.
References / Nuorodos
[1] F. Vögtle, G. Richardt, and N. Werner, Dendrimer Chemistry:
Concepts, Synthesis, Properties, Applications (Wiley–VCH,
Weinheim, 2009) ch. 3,
http://dx.doi.org/10.1002/9783527626953
[2] L. Pastor, J. Barberá, M. Mckenna, M. Marcos, R. Martín-Rapún,
J.L. Serrano, G.R. Luckhurst, and A. Mainal, End-on and side-on
nematic liquid crystal dendrimers, Macromolecules 37,
9386–9394 (2004),
http://dx.doi.org/10.1021/ma048450p
[3] M. Franckevičius, R. Vaišnoras, M. Marcos, J.L. Serrano, R.
Karpicz, and V. Gulbinas, Excited-state relaxation of dendrimers
functionalized with cyanoazobenzene-type terminal groups, Chem.
Phys. Lett. 485, 156–160 (2010),
http://dx.doi.org/10.1016/j.cplett.2009.12.028
[4] T. Pietsch, D. Appelhans, N. Gindy, B. Voit, and A. Fahmi,
Oligosaccharide-modified dendrimers for templating gold
nanoparticles: Tailoring the particle size as a function of
dendrimer generation and molecular structure, Colloids Surf. A 341,
93–102 (2009),
http://dx.doi.org/10.1016/j.colsurfa.2009.03.044
[5] M. Liu and J.M.J. Fréchet, Design dendrimers for drug delivery,
Pharm. Sci. Technol. Today 2, 393–401 (1999),
http://dx.doi.org/10.1016/S1461-5347(99)00203-5
[6] Non-viral Gene Therapy: Gene Design and Delivery, eds.
K. Taira, K. Kataoka, and T. Niidome (Springer Verlag, Tokyo, 2005)
ch. 1,
http://www.springer.com/life+sciences/cell+biology/book/978-4-431-25122-4
[7] V. Butkus, D. Abramavicius, A. Gelzinis, and L. Valkunas,
Two-dimensional optical spectroscopy of molecular aggregates, Lith.
J. Phys. 50, 267–303 (2010),
http://dx.doi.org/10.3952/lithjphys.50305
[8] G. Seniutinas, L. Laipniece, J. Kreicberga, V. Kampars, J.
Gražulevičius, R. Petruškevičius, and R. Tomašiūnas, Orientational
relaxation of three different dendrimers in polycarbonate matrix
investigated by optical poling, J. Opt. A 11, 034003–034009
(2009),
http://dx.doi.org/10.1088/1464-4258/11/3/034003
[9] B.-K. An, R. Mulherin, B. Langley, P. Burn, and P. Meredith,
Ruthenium complex-cored dendrimers: Shedding light on efficiency
trade-offs in dyesensitised solar cells, Org. Electron. 10,
1356–1363 (2009),
http://dx.doi.org/10.1016/j.orgel.2009.07.017
[10] T. Nakashima, N. Satoh, K. Albrecht, and K. Yamamoto, Interface
modification on TiO2 electrode using dendrimers in
dye-sensitized solar cells, Chem. Mater. 20, 2538–2543
(2008),
http://dx.doi.org/10.1021/cm703279u
[11] E. Badaeva, M.R. Harpham, R. Guda, Özgün Süzer, Ch.-Qi Ma, P.
Bäuerle, T. Goodson III, and S. Tretiak, Excited-state structure of
oligothiophene dendrimers: computational and experimental study, J.
Phys. Chem. B 114, 15808–15817 (2010),
http://dx.doi.org/10.1021/jp109624d
[12] A. Kulbickas, J. Tamuliene, L. Rasteniene, M. Franckevicius, R.
Vaisnoras, M. Marcos, J.L. Serrano, B. Jaskorzynska, and L.
Wosinski, Optical study and structure modelling of PPI liquid
crystalline dendrimer derivatives, Photonics Nanostr. 5,
178–183 (2007),
http://dx.doi.org/10.1016/j.photonics.2007.06.003
[13] R.C. van Duijvenbode, M. Borkovec, and G.J.M. Koper, Acid-base
properties of poly(propylene imine)dendrimers, Polymer 39,
2657–2664 (1998),
http://dx.doi.org/10.1016/S0032-3861(97)00573-9
[14] M.J. Jasmine, M. Kavitha, and E. Prasad, Effect of
solvent-controlled aggregation on the intrinsic emission properties
of PAMAM dendrimers, J. Lumin. 129, 506–513 (2009),
http://dx.doi.org/10.1016/j.jlumin.2008.12.005
[15] I.B. Rietveld and D. Bedeaux, The viscosity of solutions of
poly(propylene imine) dendrimers in methanol, J. Colloid Interf.
Sci. 235, 89–92 (2001),
http://dx.doi.org/10.1006/jcis.2000.7250
[16] J. Gregorowicz and M. Luszczyk, Impact of water on the
miscibility of DAB-dendr-(NH2)64 and benzene,
Macromolecules 40, 5966–5972 (2007),
http://dx.doi.org/10.1021/ma062860r
[17] C.F. Bohren and D. Huffman, Absorption and Scattering of
Light by Small Particles (John Wiley, New York, 1983),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471293407.html
[18] R. Scherrenberg, B. Coussens, P. van Vliet, G. Edouard, J.
Brackman, E. de Brabander, and K. Mortensen, The molecular
characteristics of poly(propyleneimine) dendrimers as studied with
small-angle neutron scattering, viscosimetry, and molecular
dynamics, Macromolecules 31, 456–461 (1998),
http://dx.doi.org/10.1021/ma9618181
[19] P. Laven, MiePlot program, available at
http://www.philiplaven.com/MiePlot.htm
[20] M.F. Budyka, T.N. Gavrishova, and O.D. Laukhina, Spectral and
photochemical properties of bifunctional compounds and their
complexes. 2. Photocyclization of -bis(diphenylamino)alkanes
to -di(carbazolyl)alkanes,
Russ. Chem. Bull. 48, 1491–1496 (1999),
http://dx.doi.org/10.1007/BF02496398