[PDF]     http://dx.doi.org/10.3952/lithjphys.51402

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 276–282 (2011)


InAlGaN LASER DIODES GROWN BY PLASMA ASSISTED MOLECULAR BEAM EPITAXY
C. Skierbiszewski a, b, M. Siekacz a, b, H. Turski a, M. Sawicka a, A. Feduniewicz-Żmuda a, P. Perlin a, b, T. Suski a, Z. Wasilewski c, I. Grzegory a, and S. Porowski a
a Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warszawa, Poland
E-mail: czeslaw@unipress.waw.pl
b TopGaN Ltd, Sokołowska 29/37, 01-142 Warszawa, Poland
c Institute for Microstructural Sciences, National Research Council, 1200 Montreal Road, Ottawa, K1A 0R6 Canada

Received 28 August 2011; accepted 1 December 2011

We present recent progress in the growth of nitride-based laser diodes (LDs) made by plasma assisted molecular beam epitaxy (PAMBE). This technology is ammonia-free, and nitrogen for the growth is activated by RF plasma source from nitrogen molecules. The demonstration of continuous wave blue-violet InGaN LDs has opened a new perspective for PAMBE in optoelectronics. We demonstrate the laser diodes grown by PAMBE operating at the range from 410 nm to 455 nm. The key factors which allow us to extend the lasing wavelength to 455 nm are (a) improvements in the growth of InGaN quantum wells with high nitrogen flux in PAMBE, and (b) design of the laser diode structure. We also report on optically pumped lasing at 501 nm on InGaN laser structures which show that there are no intrinsic limitations in PAMBE technology for the growth of green LDs.
Keywords: GaN, laser diodes, molecular beam epitaxy, InGaN growth
PACS: 78.55.Cr, 78.67.De, 81.15.Hi


InAlGaN LAZERINIAI DIODAI, AUGINAMI PLAZMA PAPILDOMO MOLEKULINIO SPINDULIO EPITAKSIJOS BŪDU
C. Skierbiszewski a, b, M. Siekacz a, b, H. Turski a, M. Sawicka a, A. Feduniewicz-Żmuda a, P. Perlin a, b, T. Suski a, Z. Wasilewski c, I. Grzegory a, S. Porowski a
a Lenkijos mokslų akademijos Didelio slėgio fizikos institutas, Varšuva, Lenkija
b TopGaN Ltd, Varšuva, Lenkija
c Nacionalinės mokslo tarybos Mikrostruktūrinių mokslų institutas, Otava, Kanada

Aprašyti naujausi pasiekimai auginant nitrido pagrindo lazerinius diodus (LD) plazma papildomo molekulinio spindulio epitaksijos būdu (angl. plasma assisted molecular beam epitaxy, PAMBE). Šioje technologijoje nenaudojamas amoniakas, o auginimui reikalingą azotą iš azoto molekulių aktyvuoja radijo dažninis plazmos šaltinis. Nuolatinio švytėjimo mėlynai violetinių InGaN LD sukūrimas atvėrė naują perspektyvą naudoti PAMBE elektronikoje. Pademonstruoti lazeriniai diodai, išauginti PAMBE būdu, veikiantys 410–455 nm srityje. Pagrindiniai veiksniai, leidžiantys pailginti lazerinės šviesos bangą iki 455 nm, yra (a) InGaN kvantinių šulinių auginimo patobulinimai esant dideliam azoto srautui naudojant PAMBE ir (b) lazerinio diodo konstrukcija. Taip pat pranešama apie optiškai žadinamą lazerinę 501 nm emisiją InGaN dariniuose, o tai reiškia, kad nėra vidinių kliūčių išauginti žalios šviesos LD naudojant PAMBE technologiją.


References / Nuorodos

[1] S. Nakamura, G. Fasol, and S.J. Pearton, The Blue Laser Diode: The Complete Story, 2nd ed. (Springer–Verlag, 2000),
http://www.springer.com/physics/optics+%26+lasers/book/978-3-540-66505-2
[2] T. Jang, O.H. Nam, K.H. Ha, S.N. Lee, J.K. Son, H.Y. Ryu, K.S. Kim, H.S. Paek, Y.J. Sung, H.G. Kim, S.H. Chae, Y.H. Kim, and Y. Park, Recent achievements of AlInGaN based laser diodes in blue and green wavelength, Proc. SPIE 6473, 64730X (2007),
http://dx.doi.org/10.1117/12.702998
[3] C. Wetzel and T. Detchprom, Development of high power green light emitting diode chips, MRS Internet J. Nitride Semicond. Res. 10, 2 (2005),
http://dx.doi.org/10.1557/S1092578300000533
[4] T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, 510–515 nm InGaN-based green laser diodes on c-plane GaN substrate, Appl. Phys. Express 2, 062201 (2009),
http://dx.doi.org/10.1143/APEX.2.062201
[5] Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama, and T. Nakamura, Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar {202¯{\overline 2}1} GaN substrates, Appl. Phys. Express 2, 092101 (2009),
http://dx.doi.org/10.1143/APEX.2.092101
[6] C. Skierbiszewski, P. Wiśniewski, M. Siekacz, P. Perlin, A. Feduniewicz-Zmuda, G. Nowak, I. Grzegory, M. Leszczyński, and S. Porowski, 60 mW continuous-wave operation of InGaN laser diodes made by plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett. 88, 221108 (2006),
http://dx.doi.org/10.1063/1.2208929
[7] C. Skierbiszewski, Z.R. Wasilewski, I. Grzegory, and S. Porowski, Nitride-based laser diodes by plasma-assisted MBE – From violet to green emission, J. Cryst. Growth 311, 1632 (2009),
http://dx.doi.org/10.1016/j.jcrysgro.2008.12.040
[8] C.R. Elsass, I.P. Smorchkova, B. Heying, E. Haus, P. Fini, K. Maranowski, J.P. Ibbetson, S. Keller, P.M. Petroff, S.P. DenBaars, U.K. Mishra, and J.S. Speck, High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy, Appl. Phys. Lett. 74, 3528 (1999),
http://dx.doi.org/10.1063/1.124150
[9] J. Neugebauer, T.K. Zywietz, M. Scheffler, J.E. Northrup, H. Chen, and R.M. Feenstra, Adatom kinetics on and below the surface: the existence of a new diffusion channel, Phys. Rev. Lett. 90, 056101 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.056101
[10] J.E. Northrup, J. Neugebauer, R.M. Feenstra, and A.R. Smith, Structure of GaN(0001): the laterally contracted Ga bilayer model, Phys. Rev. B 61, 9932 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.9932
[11] H. Riechert, R. Averbeck, A. Graber, M. Schienle, U. Strauss, and H. Tews, MBE growth of (In)GaN for LED applications, Mater. Res. Soc. Symp. Proc. 449, 149 (1996),
http://dx.doi.org/10.1557/PROC-449-149
[12] M. Siekacz, A. Feduniewicz-Żmuda, G. Cywiński, M. Kryśko, I. Grzegory, S. Krukowski, K.E. Waldrip, W. Jantsch, Z.R. Wasilewski, S. Porowski, and C. Skierbiszewski, Growth of InGaN and InGaN/InGaN quantum wells by plasma-assisted molecular beam epitaxy, J. Cryst. Growth 310, 3983 (2008),
http://dx.doi.org/10.1016/j.jcrysgro.2008.06.011
[13] M. Siekacz, M. Sawicka, H. Turski, G. Cywiński, A. Khachapuridze, P. Perlin, T. Suski, M. Boćkowski, J. Smalc-Koziorowska, M. Kryśko, R. Kudrawiec, M. Syperek, J. Misiewicz, Z. Wasilewski, S. Porowski and C. Skierbiszewski, Optically pumped 500 nm InGaN green lasers grown by plasma-assisted molecular beam epitaxy, J. Appl. Phys. 110, 063110 (2011),
http://dx.doi.org/10.1063/1.3639292
[14] P. Perlin, K. Holc, M. Sarzyński, W. Scheibenzuber, Ł. Marona, R. Czernecki, M. Leszczyński, M. Bockowski, I. Grzegory, S. Porowski, G. Cywiński, P. Firek, J. Szmidt, U. Schwarz, and T. Suski, Application of a composite plasmonic substrate for the suppression of an electromagnetic mode leakage in InGaN laser diodes, Appl. Phys. Lett. 95, 261108 (2009),
http://dx.doi.org/10.1063/1.3280055