Apžvelgiami šviesos sustiprėjimo
reiškiniai įvairiose kvantinėse nanometrinėse sistemose.
Pirmiausia pristatomas plazminis fotoliuminescencijos
(fluorescencijos) sustiprėjimas metaluose ir metalų nanodalelėse,
molekulėse ir puslaidininkiniuose nanodariniuose. Taip pat
aptariama paviršiaus sustiprinta Ramano sklaida. Toliau
nagrinėjamas eksitoninės spinduliuotės sustiprėjimas apribotuose
nanometriniuose dariniuose, tokiuose kaip kvantiniai šuliniai,
kvantinės gijos, kvantiniai taškai bei mikrorezonatoriai.
Galiausiai pateikiami eksitoninės spinduliuotės sustiprėjimo GaAs
vienalytėse sandūrose, GaAs
-legiruotuose dariniuose bei
GaAs/AlGaAs selektyviai legiruotuose įvairiatarpėse sandūrose
eksperimentiniai tyrimo rezultatai. Padaryta išvada, kad
pastarieji reiškiniai gali būti panaudoti šviestukų ir saulės
elementų efektyvumui padidinti.
[1] C.F. Bohren and D.R. Huffman,
Absorption and Scattering of Light
by Small Particles (Wiley, New York, 1998),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471293407.html
[2] W. Caseri, Nanocomposites of polymers and metals or
semiconductors: Historical background and optical properties,
Macromol. Rapid Commun.
21,
705–722 (2000),
http://dx.doi.org/10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3
[3] U. Kreibig and M. Vollmer,
Optical Properties of Metal Clusters
(Springer-Verlag, Berlin, 1995),
http://www.springer.com/materials/book/978-3-540-57836-9
[4] S.A. Maier,
Plasmonics:
Fundamentals and Applications (Springer Science +
Business Media LLC, New York, 2007),
http://www.springer.com/materials/optical+%26+electronic+materials/book/978-0-387-33150-8
[5] C. Sönnichsen,
Plasmons
in Metal Nanostructures, Dissertation
(Ludwig-Maximilians-Universität München, München, 2001)
[6] K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, The
optical properties of metal nanoparticles: The influence of
size, shape, and dielectric environment, J. Phys. Chem. B
107, 668–677 (2003),
http://dx.doi.org/10.1021/jp026731y
[7] M. Pelton, J. Aizpurua, and G. Bryant, Metal-nanoparticle
plasmonics, Laser Photon. Rev.
2(3),
136–159
(2008),
http://dx.doi.org/10.1002/lpor.200810003
[8]
http://www.nanocomposix.com,
retrieved 3 April 2011
[9]
http://www.nanopartz.com,
retrieved 3 April 2011
[10] J.M. Steele, N.K. Grady, P. Nordlander, and N.J. Halas, in:
Surface Plasmon Nanophotonics,
eds. M.L. Brongersma and P.G. Kik (Springer, Dordrecht, 2007)
pp. 183–196,
http://dx.doi.org/10.1007/978-1-4020-4333-8
[11] K. Aslan and C.D. Geddes, in:
Metal-Enhanced Fluorescence, ed. C.D. Geddes
(Wiley, New Jersey, 2010) pp. 1–23,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470228385.html
[12] A. Mooradian, Photoluminescence of metals, Phys. Rev. Lett.
22(5), 185–187 (1969),
http://dx.doi.org/10.1103/PhysRevLett.22.185
[13] N.W. Ashcroft and N.D. Mermin,
Solid State Physics (Harcourt College
Publishers, Orlando, 1976),
http://www.amazon.co.uk/Solid-State-Physics-Neil-Ashcroft/dp/0030839939
[14] P. Apell, R. Monreal, and S. Lundqvist, Photoluminescence
of noble metals, Phys. Scripta
38,
174–179 (1988),
http://dx.doi.org/10.1088/0031-8949/38/2/012
[15] J.P. Wilcoxon, J.E. Martin, F. Parsapour, B. Wiedenman, and
D.F. Kelley, Photoluminescence from nanosize gold clusters, J.
Chem. Phys.
108(21),
9137–9143 (1998),
http://dx.doi.org/10.1063/1.476360
[16] M.B. Mohamed, V. Volkov, S. Link, and M.A. El-Sayed, The
‘lightning’ gold nanorods: fluorescence enhancement of over a
million compared to the gold metal, Chem. Phys. Lett.
317, 517–523 (2000),
http://dx.doi.org/10.1016/S0009-2614(99)01414-1
[17] E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, G.
von Plessen, D.I. Gittins, K.S. Mayya, and F. Caruso, Plasmon
emission in photoexcited gold nanoparticles, Phys. Rev. B
70(20), 205424–4 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.205424
[18] O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu.
Losytskyy, A.V. Kotko, and A.O. Pinchuk, Size-dependent
surface-plasmon-enhanced photoluminescence from silver
nanoparticles embedded in silica, Phys. Rev. B
79(23), 235438–8 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.235438
[19] G.T. Boyd, Z.H. Yu, and Y.R. Shen, Photoinduced
luminescence from the noble metals and its enhancement on
roughened surfaces, Phys. Rev. B
33(12), 7923–7936 (1986),
http://dx.doi.org/10.1103/PhysRevB.33.7923
[20] M. Moskovits, in:
Surface-Enhanced
Raman
Scattering: Physics and Applications, eds. K. Kneipp,
M. Moskovits, and H. Kneipp (Springer-Verlag, Berlin, 2006) pp.
1–18,
http://dx.doi.org/10.1007/3-540-33567-6_1
[21] E. Le Ru and P. Etchegoin,
Principles of Surface Enhanced Raman Spectroscopy and
Related Plasmonic Effects (Elsevier, Amsterdam, 2009),
http://www.elsevier.com/wps/find/bookdescription.cws_home/716405/description
[22] H. Xu, J. Aizpurua, M. Käll, and P. Apell, Electromagnetic
contributions to single-molecule sensitivity in surface-enhanced
Raman scattering, Phys. Rev. E
62(3),
4318–4324
(2000),
http://dx.doi.org/10.1103/PhysRevE.62.4318
[23] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan,
R.R. Dasari, and M.S. Feld, Single molecule detection using
surface-enhanced Raman scattering (SERS), Phys. Rev. Lett.
78(9), 1667–1670 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.1667
[24] K. Kneipp, H. Kneipp, and H.G. Bohr, in:
Surface-Enhanced Raman Scattering:
Physics and Applications, eds. K. Kneipp, M. Moskovits,
and H. Kneipp (Springer-Verlag, Berlin, 2006) pp. 261–278,
http://dx.doi.org/10.1007/11663898
[25] W.W. Parson,
Modern
Optical Spectroscopy: With Examples from Biophysics and
Biochemistry (Springer-Verlag, Berlin, 2007),
http://www.springer.com/life+sciences/biochemistry+%26+biophysics/book/978-3-540-37535-7
[26] N. Valley, L. Jensen, J. Autschbach, and G.C. Schatz,
Theoretical studies of surface enhanced hyper-Raman
spectroscopy: The chemical enhancement mechanism, J. Chem. Phys.
133(5), 054103–8 (2010),
http://dx.doi.org/10.1063/1.3456544
[27] E. Hao and G.C. Schatz, Electromagnetic fields around
silver nanoparticles and dimers, J. Chem. Phys.
120(1), 357–366 (2004),
http://dx.doi.org/10.1063/1.1629280
[28] B. Pettinger, in:
Surface-Enhanced
Raman
Scattering: Physics and Applications, eds. K. Kneipp,
M. Moskovits, and H. Kneipp (Springer-Verlag, Berlin, 2006) pp.
217–240,
http://dx.doi.org/10.1007/3-540-33567-6_11
[29] P. Verma, Y. Inouye, and S. Katawa, in:
Surface-Enhanced Raman Scattering:
Physics and Applications, eds. K. Kneipp, M. Moskovits,
and H. Kneipp (Springer-Verlag, Berlin, 2006) pp. 241–260,
http://www.springer.com/physics/optics+%26+lasers/book/978-3-540-33566-5
[30]
Tip Enhancement,
eds. S. Kawata and V.M. Shalaev (Elsevier, Amsterdam, 2007),
http://www.elsevier.com/wps/find/bookdescription.cws_home/709058/description
[31] A.G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K.L.
Kavanagh, Nanohole-enhanced Raman scattering, Nano Lett.
4(10), 2015–2018 (2004),
http://dx.doi.org/10.1021/nl048818w
[32] K.A. Willets and R.P. Van Duyne, Localized surface plasmon
resonance spectroscopy and sensing, Annu. Rev. Phys. Chem.
58, 267–297 (2007),
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607
[33] P.L. Stiles, J.A. Dieringer, N.C. Shah, and R.P. Van Duyne,
Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem.
1, 601–626 (2008),
http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814
[34] G.W. Ford and W.H. Weber, Electromagnetic interactions of
molecules with metal surfaces, Phys. Rep.
113(4), 195–287 (1984),
http://dx.doi.org/10.1016/0370-1573(84)90098-X
[35] P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and
quenching of single-molecule fluorescence, Phys. Rev. Lett.
96(11), 113002–4 (2006),
http://dx.doi.org/10.1103/PhysRevLett.96.113002
[36] E.C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A.
Hohenau, J.R. Krenn, E. Blackie, and P.G. Etchegoin, in:
Metal-Enhanced Fluorescence,
ed. C.D. Geddes (Wiley, New Jersey, 2010) pp. 25–65,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470228385.html
[37] E.C. Le Ru, P.G. Etchegoin, J. Grand, N. Félidj, J. Aubard,
and G. Lévi, Mechanisms of spectral profile modification in
surface-enhanced fluorescence, J. Phys. Chem. C
111, 16076–16079 (2007),
http://dx.doi.org/10.1021/jp076003g
[38] P. Johansson, H. Xu, and M. Käll, Surface-enhanced Raman
scattering and fluorescence near metal nanoparticles, Phys. Rev.
B
72(3), 035427–17
(2005),
http://dx.doi.org/10.1103/PhysRevB.72.035427
[39] C.D. Geddes and J.R. Lakowicz, Metal-enhanced fluorescence,
J. Fluoresc.
12(2),
121–129 (2002),
http://dx.doi.org/10.1023/A:1016875709579
[40] J.R. Lakowicz,
Principles
of Fluorescence Spectroscopy, 3rd ed. (Springer Science
+ Business Media, LLC, New York, 2006),
http://www.springer.com/chemistry/analytical+chemistry/book/978-0-387-31278-1
[41] D.J. Ross, N.P.W. Pieczonka, and R.F. Aroca, in:
Metal-Enhanced Fluorescence,
ed. C.D. Geddes (Wiley, New Jersey, 2010) pp. 67–90,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470228385.html
[42] D.M. Schaadt, B. Feng, and E.T. Yu, Enhanced semiconductor
optical absorption via surface plasmon excitation in metal
nanoparticles, Appl. Phys. Lett.
86(6), 063106–3 (2005),
http://dx.doi.org/10.1063/1.1855423
[43] K. Nakayama, K. Tanabe, and H.A. Atwater, Plasmonic
nanoparticle enhanced light absorption in GaAs solar cells,
Appl. Phys. Lett.
93(12),
121904–3 (2008),
http://dx.doi.org/10.1063/1.2988288
[44] Q. Gu, Plasmonic metallic nanostructures for efficient
absorption enhancement in ultrathin CdTe-based photovoltaic
cells, J. Phys. D: Appl. Phys.
43,
465101–5 (2010),
http://dx.doi.org/10.1088/0022-3727/43/46/465101
[45] Y. Ito, K. Matsuda, and Y. Kanemitsu, Mechanism of
photoluminescence enhancement in single semiconductor
nanocrystals on metal surfaces, Phys. Rev. B
75(3), 033309–4 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.033309
[46] X. Zhou, Q. Wei, L. Wang, B. Joshi, Q. Wei, and K. Sun,
Enhanced photoluminescence from gallium arsenide semiconductor
coated with Au nanoparticles, Appl. Phys. A
96, 637–641 (2009),
http://dx.doi.org/10.1007/s00339-009-5277-0
[47] A.O. Govorov, G.W. Bryant, W. Zhang, T. Skeini, J. Lee,
N.A. Kotov, J.M. Slocik, and R.R. Naik, Exciton–plasmon
interaction and hybrid excitons in semiconductor–metal
nanoparticle assemblies, Nano Lett.
6(5), 984–994 (2006),
http://dx.doi.org/10.1021/nl0602140
[48] J. Vučković, M. Lončar, and A. Scherer, Surface plasmon
enhanced light-emitting diode, IEEE J. Quantum Electron.
36(10), 1131–1144 (2000),
http://dx.doi.org/10.1109/3.880653
[49] S. Pillai, K.R. Catchpole, T. Trupke, G. Zhang, J. Zhao,
and M.A. Green, Enhanced emission from Si-based light-emitting
diodes using surface plasmons, Appl. Phys. Lett.
88(16), 161102–3 (2006),
http://dx.doi.org/10.1063/1.2195695
[50] S. Pillai, K.R. Catchpole, T. Trupke, and M.A. Green,
Surface plasmon enhanced silicon solar cells, J. Appl. Phys.
101(9), 093105–8 (2007),
http://dx.doi.org/10.1063/1.2734885
[51] H.A. Atwater and A. Polman, Plasmonics for improved
photovoltaic devices, Nat. Mater.
9, 205–213 (2010),
http://dx.doi.org/10.1038/nmat2629
[52] K.R. Catchpole and A. Polman, Plasmonic solar cells, Opt.
Express
16(26),
21793–21780 (2008),
http://dx.doi.org/10.1364/OE.16.021793
[53] D.J. Bergman and M.I. Stockman, Surface plasmon
amplification by stimulated emission of radiation: quantum
generation of coherent surface plasmons in nanosystems, Phys.
Rev. Lett.
90(2),
027402–4 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.027402
[54] M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M.
Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U.
Wiesner, Demonstration of a spaser-based nanolaser, Nature
460(27), 1110–1112 (2009),
http://dx.doi.org/10.1038/nature08318
[55] M.I. Stockman, The spaser as a nanoscale quantum generator
and ultrafast amplifier, J. Opt.
12(2), 024004–13 (2010),
http://dx.doi.org/10.1088/2040-8978/12/2/024004
[56] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S.
Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Enhanced
luminescence of CdSe quantum dots on gold colloids, Nano Lett.
2(12), 1449–1452 (2002),
http://dx.doi.org/10.1021/nl025819k
[57] J.Z. Zhang,
Optical
Properties and Spectroscopy of Nanomaterials (World
Scientific, Singapore, 2009),
http://www.worldscibooks.com/nanosci/7093.html
[58] K. Okamoto, in:
Nanoscale
Photonics
and Optoelectronics, eds. Z.M. Wang and A. Neogi
(Springer Science + Business Media, LLC, New York, 2010) pp.
27–46,
http://dx.doi.org/10.1007/978-1-4419-7587-4_2
[59] H.Y. Lin, Y.F. Chen, J.G. Wu, D.I. Wang, and C.C. Chen,
Carrier transfer induced photoluminescence change in
metal-semiconductor core-shell nanostructures, Appl. Phys. Lett.
88(16), 161911–3 (2006),
http://dx.doi.org/10.1063/1.2197311
[60] J. Kundrotas, A. Čerškus, V. Nargelienė, A. Sužiedėlis, S.
Ašmontas, J. Gradauskas, A. Johannessen, E. Johannessen, and V.
Umansky, Enhanced exciton photoluminescence in the selectively
Si-doped GaAs/Al
xGa
1−xAs
heterostructures, J. Appl. Phys.
108(6), 063522–7 (2010),
http://dx.doi.org/10.1063/1.3483240
[61] T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K.
Diesner, A. Chemseddine, A. Eychmüller, and H. Weller, CdS
nanoclusters: synthesis, characterization, size dependent
oscillator strength, temperature shift of the excitonic
transition energy, and reversible absorbance shift, J. Phys.
Chem.
98, 7665–7673
(1994),
http://dx.doi.org/10.1021/j100082a044
[62] J. Kundrotas, A. Čerškus, S. Ašmontas, G. Valušis, B.
Sherliker, M.P. Halsall, M.J. Steer, E. Johannessen, and P.
Harrison, Excitonic and impurity-related optical transitions in
Be δ-doped GaAs/AlAs multiple quantum wells:
Fractional-dimensional space approach, Phys. Rev. B
72(23), 235322–11 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.235322
[63] B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and
D.S. Katzer, Enhanced radiative recombination of free excitons
in GaAs quantum wells, Phys. Rev. Lett.
67(17), 2355–2358 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.2355
[64] L.C. Andreani and A. Pasquarello, Accurate theory of
excitons in GaAs-Ga
1-xAl
xAs quantum wells, Phys.
Rev. B
42(14),
8928–8938 (1990),
http://dx.doi.org/10.1103/PhysRevB.42.8928
[65] V. Voliotis, R. Grousson, P. Lavallard, and R. Planel,
Binding energies and oscillator strengths of excitons in thin
GaAs/Ga
0.7Al
0.3As quantum wells, Phys.
Rev. B
52(15),
10725–10728 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.10725
[66] A.V. Kavokin, J.J. Baumberg, G. Malpuech, and F.P. Laussy,
Microcavities (Oxford
University Press, Oxford, 2007),
http://ukcatalogue.oup.com/product/9780199228942.do
[67]
The Physics of
Semiconductor Microcavities: From Fundamentals to Nanoscale
Devices, ed. B. Deveaud (Wiley-VCH, Weinheim, 2007),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527610162.html
[68] R. Shimada, Ü. Özgür, and H. Morkoç, in:
Nanoscale Photonics and
Optoelectronics, eds. Z.M. Wang and A. Neogi (Springer
Science + Business Media, LLC, New York, 2010) pp. 47–64,
http://dx.doi.org/10.1007/978-1-4419-7587-4_3
[69] G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A.
Scherer, Vacuum Rabi splitting in semiconductors, Nature Phys.
2, 81–90 (2006),
http://dx.doi.org/10.1038/nphys227
[70] V. Kazlauskaitė, A. Sužiedėlis, A. Čerškus, J. Gradauskas,
S. Ašmontas, and J. Kundrotas, Enhancement of excitonic
photoluminescence in silicon-doped
n+/
i-GaAs structures, Lith. J. Phys.
49(3), 285–290 (2009),
http://dx.doi.org/10.3952/lithjphys.49307
[71] A. Čerškus, V. Nargelienė, J. Kundrotas, A. Sužiedėlis, S.
Ašmontas, J. Gradauskas, A. Johannessen, and E. Johannessen,
Enhancement of the excitonic photoluminescence in
n+/
i-GaAs by controlling the
thickness and impurity concentration of the
n+ layer, Acta
Phys. Pol. A
119(2),
154–157 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-19.html
[72] V. Nargelienė, S. Ašmontas, A. Čerškus, J. Gradauskas, J.
Kundrotas, and A. Sužiedėlis, Peculiarities of excitonic
photoluminescence in Si δ-doped GaAs structures, Acta Phys. Pol.
A
119(2), 177–179
(2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-26.html
[73] J. Kundrotas, A. Čerškus, J. Liberis, A. Matulionis, J.H.
Leach, and A.H. Morkoç, Enhancement and narrowing of excitonic
lines in AlInN/GaN heterostructures, Acta Phys. Pol. A
119(2), 173–176 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-25.html