[PDF]     http://dx.doi.org/10.3952/lithjphys.51404

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 292–303 (2011)


ENHANCED LIGHT EMISSION IN NANOSTRUCTURES
J. Kundrotas a, A. Čerškus a, V. Nargelienė a, A. Sužiedėlis a, S. Ašmontas a, J. Gradauskas a, A. Johannessen b, and E. Johannessen b
a Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: kundrot@pfi.lt
b Vestfold University College, Raveien 197, 3184 Borre, Norway

Received 27 October 2011; accepted 1 December 2011

The enhancement of light emissive processes in different quantum nanometric systems is presented in this review. The plasmonic enhanced photoluminescence (fluorescence) of metals and metal nanoparticles, molecules and semiconductor nanostructures, as well as surface-enhanced Raman scattering is initially considered. The enhancement of excitonic photoluminescence intensity in semiconductor confined systems such as quantum wells, quantum wires and quantum dots, and microcavities are then discussed. Finally, the experimental results of the enhanced exciton photoluminescence from GaAs homojunctions, δ-doped GaAs structures, GaAs/AlGaAs selectively doped and AlInN/GaN heterostuctures is presented. These results can be applied to enhance the emission of light-emitting diodes, as well as to increase the efficiency of solar cells.
Keywords: plasmonics, photoluminescence, fluorescence, SERS, MEF, quantum wells, heterostructures
PACS: 73.20.Mf, 73.21.-b, 78.55.-m, 78.30.-j, 78.67.Bf


ŠVIESOS EMISIJOS SUSTIPRĖJIMAS NANODARINIUOSE
J. Kundrotas a, A. Čerškus a, V. Nargelienė a, A. Sužiedėlis a, S. Ašmontas a, J. Gradauskas a, A. Johannessen b, and E. Johannessen b
a Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva
b Vestfoldo universitetinis koledžas, Borre, Norvegija

Apžvelgiami šviesos sustiprėjimo reiškiniai įvairiose kvantinėse nanometrinėse sistemose. Pirmiausia pristatomas plazminis fotoliuminescencijos (fluorescencijos) sustiprėjimas metaluose ir metalų nanodalelėse, molekulėse ir puslaidininkiniuose nanodariniuose. Taip pat aptariama paviršiaus sustiprinta Ramano sklaida. Toliau nagrinėjamas eksitoninės spinduliuotės sustiprėjimas apribotuose nanometriniuose dariniuose, tokiuose kaip kvantiniai šuliniai, kvantinės gijos, kvantiniai taškai bei mikrorezonatoriai. Galiausiai pateikiami eksitoninės spinduliuotės sustiprėjimo GaAs vienalytėse sandūrose, GaAs δ-legiruotuose dariniuose bei GaAs/AlGaAs selektyviai legiruotuose įvairiatarpėse sandūrose eksperimentiniai tyrimo rezultatai. Padaryta išvada, kad pastarieji reiškiniai gali būti panaudoti šviestukų ir saulės elementų efektyvumui padidinti.


References / Nuorodos

[1] C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471293407.html
[2] W. Caseri, Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties, Macromol. Rapid Commun. 21, 705–722 (2000),
http://dx.doi.org/10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3
[3] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995),
http://www.springer.com/materials/book/978-3-540-57836-9
[4] S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, New York, 2007),
http://www.springer.com/materials/optical+%26+electronic+materials/book/978-0-387-33150-8
[5] C. Sönnichsen, Plasmons in Metal Nanostructures, Dissertation (Ludwig-Maximilians-Universität München, München, 2001)
[6] K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B 107, 668–677 (2003),
http://dx.doi.org/10.1021/jp026731y
[7] M. Pelton, J. Aizpurua, and G. Bryant, Metal-nanoparticle plasmonics, Laser Photon. Rev. 2(3), 136–159 (2008),
http://dx.doi.org/10.1002/lpor.200810003
[8] http://www.nanocomposix.com, retrieved 3 April 2011
[9] http://www.nanopartz.com, retrieved 3 April 2011
[10] J.M. Steele, N.K. Grady, P. Nordlander, and N.J. Halas, in: Surface Plasmon Nanophotonics, eds. M.L. Brongersma and P.G. Kik (Springer, Dordrecht, 2007) pp. 183–196,
http://dx.doi.org/10.1007/978-1-4020-4333-8
[11] K. Aslan and C.D. Geddes, in: Metal-Enhanced Fluorescence, ed. C.D. Geddes (Wiley, New Jersey, 2010) pp. 1–23,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470228385.html
[12] A. Mooradian, Photoluminescence of metals, Phys. Rev. Lett. 22(5), 185–187 (1969),
http://dx.doi.org/10.1103/PhysRevLett.22.185
[13] N.W. Ashcroft and N.D. Mermin, Solid State Physics (Harcourt College Publishers, Orlando, 1976),
http://www.amazon.co.uk/Solid-State-Physics-Neil-Ashcroft/dp/0030839939
[14] P. Apell, R. Monreal, and S. Lundqvist, Photoluminescence of noble metals, Phys. Scripta 38, 174–179 (1988),
http://dx.doi.org/10.1088/0031-8949/38/2/012
[15] J.P. Wilcoxon, J.E. Martin, F. Parsapour, B. Wiedenman, and D.F. Kelley, Photoluminescence from nanosize gold clusters, J. Chem. Phys. 108(21), 9137–9143 (1998),
http://dx.doi.org/10.1063/1.476360
[16] M.B. Mohamed, V. Volkov, S. Link, and M.A. El-Sayed, The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317, 517–523 (2000),
http://dx.doi.org/10.1016/S0009-2614(99)01414-1
[17] E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, G. von Plessen, D.I. Gittins, K.S. Mayya, and F. Caruso, Plasmon emission in photoexcited gold nanoparticles, Phys. Rev. B 70(20), 205424–4 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.205424
[18] O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, and A.O. Pinchuk, Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica, Phys. Rev. B 79(23), 235438–8 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.235438
[19] G.T. Boyd, Z.H. Yu, and Y.R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Phys. Rev. B 33(12), 7923–7936 (1986),
http://dx.doi.org/10.1103/PhysRevB.33.7923
[20] M. Moskovits, in: Surface-Enhanced Raman Scattering: Physics and Applications, eds. K. Kneipp, M. Moskovits, and H. Kneipp (Springer-Verlag, Berlin, 2006) pp. 1–18,
http://dx.doi.org/10.1007/3-540-33567-6_1
[21] E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009),
http://www.elsevier.com/wps/find/bookdescription.cws_home/716405/description
[22] H. Xu, J. Aizpurua, M. Käll, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62(3), 4318–4324 (2000),
http://dx.doi.org/10.1103/PhysRevE.62.4318
[23] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78(9), 1667–1670 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.1667
[24] K. Kneipp, H. Kneipp, and H.G. Bohr, in: Surface-Enhanced Raman Scattering: Physics and Applications, eds. K. Kneipp, M. Moskovits, and H. Kneipp (Springer-Verlag, Berlin, 2006) pp. 261–278,
http://dx.doi.org/10.1007/11663898
[25] W.W. Parson, Modern Optical Spectroscopy: With Examples from Biophysics and Biochemistry (Springer-Verlag, Berlin, 2007),
http://www.springer.com/life+sciences/biochemistry+%26+biophysics/book/978-3-540-37535-7
[26] N. Valley, L. Jensen, J. Autschbach, and G.C. Schatz, Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism, J. Chem. Phys. 133(5), 054103–8 (2010),
http://dx.doi.org/10.1063/1.3456544
[27] E. Hao and G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys. 120(1), 357–366 (2004),
http://dx.doi.org/10.1063/1.1629280
[28] B. Pettinger, in: Surface-Enhanced Raman Scattering: Physics and Applications, eds. K. Kneipp, M. Moskovits, and H. Kneipp (Springer-Verlag, Berlin, 2006) pp. 217–240,
http://dx.doi.org/10.1007/3-540-33567-6_11
[29] P. Verma, Y. Inouye, and S. Katawa, in: Surface-Enhanced Raman Scattering: Physics and Applications, eds. K. Kneipp, M. Moskovits, and H. Kneipp (Springer-Verlag, Berlin, 2006) pp. 241–260,
http://www.springer.com/physics/optics+%26+lasers/book/978-3-540-33566-5
[30] Tip Enhancement, eds. S. Kawata and V.M. Shalaev (Elsevier, Amsterdam, 2007),
http://www.elsevier.com/wps/find/bookdescription.cws_home/709058/description
[31] A.G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K.L. Kavanagh, Nanohole-enhanced Raman scattering, Nano Lett. 4(10), 2015–2018 (2004),
http://dx.doi.org/10.1021/nl048818w
[32] K.A. Willets and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58, 267–297 (2007),
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607
[33] P.L. Stiles, J.A. Dieringer, N.C. Shah, and R.P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem. 1, 601–626 (2008),
http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814
[34] G.W. Ford and W.H. Weber, Electromagnetic interactions of molecules with metal surfaces, Phys. Rep. 113(4), 195–287 (1984),
http://dx.doi.org/10.1016/0370-1573(84)90098-X
[35] P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 96(11), 113002–4 (2006),
http://dx.doi.org/10.1103/PhysRevLett.96.113002
[36] E.C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J.R. Krenn, E. Blackie, and P.G. Etchegoin, in: Metal-Enhanced Fluorescence, ed. C.D. Geddes (Wiley, New Jersey, 2010) pp. 25–65,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470228385.html
[37] E.C. Le Ru, P.G. Etchegoin, J. Grand, N. Félidj, J. Aubard, and G. Lévi, Mechanisms of spectral profile modification in surface-enhanced fluorescence, J. Phys. Chem. C 111, 16076–16079 (2007),
http://dx.doi.org/10.1021/jp076003g
[38] P. Johansson, H. Xu, and M. Käll, Surface-enhanced Raman scattering and fluorescence near metal nanoparticles, Phys. Rev. B 72(3), 035427–17 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.035427
[39] C.D. Geddes and J.R. Lakowicz, Metal-enhanced fluorescence, J. Fluoresc. 12(2), 121–129 (2002),
http://dx.doi.org/10.1023/A:1016875709579
[40] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer Science + Business Media, LLC, New York, 2006),
http://www.springer.com/chemistry/analytical+chemistry/book/978-0-387-31278-1
[41] D.J. Ross, N.P.W. Pieczonka, and R.F. Aroca, in: Metal-Enhanced Fluorescence, ed. C.D. Geddes (Wiley, New Jersey, 2010) pp. 67–90,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470228385.html
[42] D.M. Schaadt, B. Feng, and E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Appl. Phys. Lett. 86(6), 063106–3 (2005),
http://dx.doi.org/10.1063/1.1855423
[43] K. Nakayama, K. Tanabe, and H.A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl. Phys. Lett. 93(12), 121904–3 (2008),
http://dx.doi.org/10.1063/1.2988288
[44] Q. Gu, Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells, J. Phys. D: Appl. Phys. 43, 465101–5 (2010),
http://dx.doi.org/10.1088/0022-3727/43/46/465101
[45] Y. Ito, K. Matsuda, and Y. Kanemitsu, Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces, Phys. Rev. B 75(3), 033309–4 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.033309
[46] X. Zhou, Q. Wei, L. Wang, B. Joshi, Q. Wei, and K. Sun, Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles, Appl. Phys. A 96, 637–641 (2009),
http://dx.doi.org/10.1007/s00339-009-5277-0
[47] A.O. Govorov, G.W. Bryant, W. Zhang, T. Skeini, J. Lee, N.A. Kotov, J.M. Slocik, and R.R. Naik, Exciton–plasmon interaction and hybrid excitons in semiconductor–metal nanoparticle assemblies, Nano Lett. 6(5), 984–994 (2006),
http://dx.doi.org/10.1021/nl0602140
[48] J. Vučković, M. Lončar, and A. Scherer, Surface plasmon enhanced light-emitting diode, IEEE J. Quantum Electron. 36(10), 1131–1144 (2000),
http://dx.doi.org/10.1109/3.880653
[49] S. Pillai, K.R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M.A. Green, Enhanced emission from Si-based light-emitting diodes using surface plasmons, Appl. Phys. Lett. 88(16), 161102–3 (2006),
http://dx.doi.org/10.1063/1.2195695
[50] S. Pillai, K.R. Catchpole, T. Trupke, and M.A. Green, Surface plasmon enhanced silicon solar cells, J. Appl. Phys. 101(9), 093105–8 (2007),
http://dx.doi.org/10.1063/1.2734885
[51] H.A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9, 205–213 (2010),
http://dx.doi.org/10.1038/nmat2629
[52] K.R. Catchpole and A. Polman, Plasmonic solar cells, Opt. Express 16(26), 21793–21780 (2008),
http://dx.doi.org/10.1364/OE.16.021793
[53] D.J. Bergman and M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems, Phys. Rev. Lett. 90(2), 027402–4 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.027402
[54] M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Demonstration of a spaser-based nanolaser, Nature 460(27), 1110–1112 (2009),
http://dx.doi.org/10.1038/nature08318
[55] M.I. Stockman, The spaser as a nanoscale quantum generator and ultrafast amplifier, J. Opt. 12(2), 024004–13 (2010),
http://dx.doi.org/10.1088/2040-8978/12/2/024004
[56] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Enhanced luminescence of CdSe quantum dots on gold colloids, Nano Lett. 2(12), 1449–1452 (2002),
http://dx.doi.org/10.1021/nl025819k
[57] J.Z. Zhang, Optical Properties and Spectroscopy of Nanomaterials (World Scientific, Singapore, 2009),
http://www.worldscibooks.com/nanosci/7093.html
[58] K. Okamoto, in: Nanoscale Photonics and Optoelectronics, eds. Z.M. Wang and A. Neogi (Springer Science + Business Media, LLC, New York, 2010) pp. 27–46,
http://dx.doi.org/10.1007/978-1-4419-7587-4_2
[59] H.Y. Lin, Y.F. Chen, J.G. Wu, D.I. Wang, and C.C. Chen, Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures, Appl. Phys. Lett. 88(16), 161911–3 (2006),
http://dx.doi.org/10.1063/1.2197311
[60] J. Kundrotas, A. Čerškus, V. Nargelienė, A. Sužiedėlis, S. Ašmontas, J. Gradauskas, A. Johannessen, E. Johannessen, and V. Umansky, Enhanced exciton photoluminescence in the selectively Si-doped GaAs/AlxGa1−xAs heterostructures, J. Appl. Phys. 108(6), 063522–7 (2010),
http://dx.doi.org/10.1063/1.3483240
[61] T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller, and H. Weller, CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift, J. Phys. Chem. 98, 7665–7673 (1994),
http://dx.doi.org/10.1021/j100082a044
[62] J. Kundrotas, A. Čerškus, S. Ašmontas, G. Valušis, B. Sherliker, M.P. Halsall, M.J. Steer, E. Johannessen, and P. Harrison, Excitonic and impurity-related optical transitions in Be δ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Phys. Rev. B 72(23), 235322–11 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.235322
[63] B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D.S. Katzer, Enhanced radiative recombination of free excitons in GaAs quantum wells, Phys. Rev. Lett. 67(17), 2355–2358 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.2355
[64] L.C. Andreani and A. Pasquarello, Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells, Phys. Rev. B 42(14), 8928–8938 (1990),
http://dx.doi.org/10.1103/PhysRevB.42.8928
[65] V. Voliotis, R. Grousson, P. Lavallard, and R. Planel, Binding energies and oscillator strengths of excitons in thin GaAs/Ga0.7Al0.3As quantum wells, Phys. Rev. B 52(15), 10725–10728 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.10725
[66] A.V. Kavokin, J.J. Baumberg, G. Malpuech, and F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007),
http://ukcatalogue.oup.com/product/9780199228942.do
[67] The Physics of Semiconductor Microcavities: From Fundamentals to Nanoscale Devices, ed. B. Deveaud (Wiley-VCH, Weinheim, 2007),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527610162.html
[68] R. Shimada, Ü. Özgür, and H. Morkoç, in: Nanoscale Photonics and Optoelectronics, eds. Z.M. Wang and A. Neogi (Springer Science + Business Media, LLC, New York, 2010) pp. 47–64,
http://dx.doi.org/10.1007/978-1-4419-7587-4_3
[69] G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, Vacuum Rabi splitting in semiconductors, Nature Phys. 2, 81–90 (2006),
http://dx.doi.org/10.1038/nphys227
[70] V. Kazlauskaitė, A. Sužiedėlis, A. Čerškus, J. Gradauskas, S. Ašmontas, and J. Kundrotas, Enhancement of excitonic photoluminescence in silicon-doped n+/i-GaAs structures, Lith. J. Phys. 49(3), 285–290 (2009),
http://dx.doi.org/10.3952/lithjphys.49307
[71] A. Čerškus, V. Nargelienė, J. Kundrotas, A. Sužiedėlis, S. Ašmontas, J. Gradauskas, A. Johannessen, and E. Johannessen, Enhancement of the excitonic photoluminescence in n+/i-GaAs by controlling the thickness and impurity concentration of the n+ layer, Acta Phys. Pol. A 119(2), 154–157 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-19.html
[72] V. Nargelienė, S. Ašmontas, A. Čerškus, J. Gradauskas, J. Kundrotas, and A. Sužiedėlis, Peculiarities of excitonic photoluminescence in Si δ-doped GaAs structures, Acta Phys. Pol. A 119(2), 177–179 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-26.html
[73] J. Kundrotas, A. Čerškus, J. Liberis, A. Matulionis, J.H. Leach, and A.H. Morkoç, Enhancement and narrowing of excitonic lines in AlInN/GaN heterostructures, Acta Phys. Pol. A 119(2), 173–176 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-25.html