[PDF]     http://dx.doi.org/10.3952/lithjphys.51410

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 341–344 (2011)


INFRARED REFLECTANCE OF GaP NANORODS
M. Treideris, I. Šimkienė, I. Kašalynas, A. Selskis, and G.J. Babonas
Semiconductor Physics institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: marius@pfi.lt

Received 12 September 2011; accepted 1 December 2011

The reflectance of GaP nanorods on GaP substrates was investigated in the frequency range of 300–500 cm–1 by Fourier transform infrared (FTIR) reflectance spectroscopy. GaP nanorods were fabricated by the anodic electrochemical etching technique. The structure of nanorods, formed by using galvanostatic and potentiostatic etching regimes was studied by the SEM technique. The correlation between particular features in the infrared reflection spectra in the reststrahlen region and the morphology of nanorods was analysed and discussed.
Keywords: III–V semiconductors, nanorods, infrared spectra
PACS: 78.66.Sq, 81.07.-b, 81.70.Fy


GaP NANOSTRYPELIŲ INFRARAUDONASIS ATSPINDYS
M. Treideris, I. Šimkienė, I. Kašalynas, A. Selskis, G.J. Babonas
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Aprašyta n-GaP (S) nanostrypelių formavimo elektrocheminio ėsdinimo būdu 3M HNO3 etanolio elektrolite technologija. Šiuo būdu pirmą kartą suformuoti 3–10 μm aukščio ir 100–400 nm skersmens n-GaP nanostrypeliai. Aptarti darinių, gautų ėsdinant galvanostatiniame ir potenciostatiniame režime, morfologijos skirtumai. GaP dariniai su nanostrypeliais buvo tiriami nuskaitančio elektroninio mikroskopo ir atspindžio IR 300–500 cm–1 spektro ruože metodais. Išanalizuoti IR spektrų ypatumai bei jų koreliacija su nanostrypelių morfologija.


References / Nuorodos

[1] H. Föll, J. Carstensen, and S. Frey, Porous and nanoporous semiconductors and emerging applications, J. Nanomater. ID 91635 (2006),
http://dx.doi.org/10.1155/JNM/2006/91635
[2] K. Tomioka and S. Arachi, Structural and photoluminescence properties of porous GaP formed by electrochemical etching, J. Appl. Phys. 98(7), 073511 (2005),
http://dx.doi.org/10.1063/1.2076445
[3] L.A. Golovan, G.L. Petrov, G.Y. Fang, V.A. Melnikov, S.A. Gavrilov, A.M. Zheltikov, V.Y. Timoshenko, P.K. Kashkarov, V.V. Yakovlev, and C.F. Li, The role of phase-matching and nanocrystal-size effects in three-wave mixing and CARS process in porous gallium phosphide, Appl. Phys. B 84, 303–308 (2006),
http://dx.doi.org/10.1007/s00340-006-2161-x
[4] W. Hällström, T. Mårtensson, Ch. Prinz, P. Gustavsson, L. Montelius, L. Samuelson, and M. Kanje, Gallium phosphide nanowires as a substrate for cultured neurons, Nano Lett. 7, 2960–2965 (2007),
http://dx.doi.org/10.1021/nl070728e
[5] A. Sarua, J. Monecke, G. Irmer, I.M. Tiginyanu, G. Gärtner, and H.L. Hartnagel, Fröhlich modes in porous III–V semiconductors, J. Phys. Condens. Matter 13, 6687–6706 (2001),
http://dx.doi.org/10.1088/0953-8984/13/31/309
[6] N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, IR reflection, attenuated total reflection, and Raman scattering of porous polar III–V semiconductors, Phys. Status Solidi B 247(4), 955–961 (2010),
http://dx.doi.org/10.1002/pssb.200945167
[7] P.C. Ricci, A. Anedda, C.M. Carbonaro, D. Chiriu, F. Clemente, and R. Corpino, Photo-electrochemical formation of porous GaP, Phys. Status Solidi C 2(9), 3365–3369 (2005),
http://dx.doi.org/10.1002/pssc.200461170
[8] A. Belogorokhov, Yu.A. Pusep, and L. Belogorokhova, Fourier-transform infrared reflection study of the morphology of porous semiconductor structures, J. Phys. Condens. Matter 12, 3897–3900 (2000),
http://dx.doi.org/10.1088/0953-8984/12/16/311
[9] Y.C. Shen, M.H. Hon, I.C. Leu, and L.G. Teoh, Morphological characterization of porous GaP prepared by electrochemical etching, Appl. Phys. A 98, 429–434 (2010),
http://dx.doi.org/10.1007/s00339-009-5413-x
[10] R.W. Tjerkstra, Electrochemical formation of porous GaP in aqueous HNO3, Electrochem. Solid State Lett. 9, C81–C84 (2006),
http://dx.doi.org/10.1149/1.2183889
[11] D.A. Yas’kov and A.N. Pikhtin, Optical properties of gallium phosphide grown by floating zone I. Refractive index and reflection coefficient. Mater. Res. Bull. 4, 781–788 (1969),
http://dx.doi.org/10.1016/0025-5408(69)90069-5