Aprašyta n-GaP (S) nanostrypelių
formavimo elektrocheminio ėsdinimo būdu 3M HNO
etanolio elektrolite technologija. Šiuo būdu pirmą kartą
suformuoti 3–10
m aukščio ir 100–400 nm skersmens n-GaP
nanostrypeliai. Aptarti darinių, gautų ėsdinant galvanostatiniame
ir potenciostatiniame režime, morfologijos skirtumai. GaP dariniai
su nanostrypeliais buvo tiriami nuskaitančio elektroninio
mikroskopo ir atspindžio IR 300–500 cm
spektro ruože
metodais. Išanalizuoti IR spektrų ypatumai bei jų koreliacija su
nanostrypelių morfologija.
[1] H. Föll, J. Carstensen, and S.
Frey, Porous and nanoporous semiconductors and emerging
applications, J. Nanomater. ID 91635 (2006),
http://dx.doi.org/10.1155/JNM/2006/91635
[2] K. Tomioka and S. Arachi, Structural and photoluminescence
properties of porous GaP formed by electrochemical etching, J.
Appl. Phys.
98(7),
073511 (2005),
http://dx.doi.org/10.1063/1.2076445
[3] L.A. Golovan, G.L. Petrov, G.Y. Fang, V.A. Melnikov, S.A.
Gavrilov, A.M. Zheltikov, V.Y. Timoshenko, P.K. Kashkarov, V.V.
Yakovlev, and C.F. Li, The role of phase-matching and
nanocrystal-size effects in three-wave mixing and CARS process
in porous gallium phosphide, Appl. Phys. B
84, 303–308 (2006),
http://dx.doi.org/10.1007/s00340-006-2161-x
[4] W. Hällström, T. Mårtensson, Ch. Prinz, P. Gustavsson, L.
Montelius, L. Samuelson, and M. Kanje, Gallium phosphide
nanowires as a substrate for cultured neurons, Nano Lett.
7, 2960–2965 (2007),
http://dx.doi.org/10.1021/nl070728e
[5] A. Sarua, J. Monecke, G. Irmer, I.M. Tiginyanu, G. Gärtner,
and H.L. Hartnagel, Fröhlich modes in porous III–V
semiconductors, J. Phys. Condens. Matter
13, 6687–6706 (2001),
http://dx.doi.org/10.1088/0953-8984/13/31/309
[6] N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N.
Berezovska, J. Sabataityte, and I. Simkiene, IR reflection,
attenuated total reflection, and Raman scattering of porous
polar III–V semiconductors, Phys. Status Solidi B
247(4), 955–961 (2010),
http://dx.doi.org/10.1002/pssb.200945167
[7] P.C. Ricci, A. Anedda, C.M. Carbonaro, D. Chiriu, F.
Clemente, and R. Corpino, Photo-electrochemical formation of
porous GaP, Phys. Status Solidi C
2(9), 3365–3369 (2005),
http://dx.doi.org/10.1002/pssc.200461170
[8] A. Belogorokhov, Yu.A. Pusep, and L. Belogorokhova,
Fourier-transform infrared reflection study of the morphology of
porous semiconductor structures, J. Phys. Condens. Matter
12, 3897–3900 (2000),
http://dx.doi.org/10.1088/0953-8984/12/16/311
[9] Y.C. Shen, M.H. Hon, I.C. Leu, and L.G. Teoh, Morphological
characterization of porous GaP prepared by electrochemical
etching, Appl. Phys. A
98,
429–434 (2010),
http://dx.doi.org/10.1007/s00339-009-5413-x
[10] R.W. Tjerkstra, Electrochemical formation of porous GaP in
aqueous HNO
3, Electrochem. Solid State Lett.
9, C81–C84 (2006),
http://dx.doi.org/10.1149/1.2183889
[11] D.A. Yas’kov and A.N. Pikhtin, Optical properties of
gallium phosphide grown by floating zone I. Refractive index and
reflection coefficient. Mater. Res. Bull.
4, 781–788 (1969),
http://dx.doi.org/10.1016/0025-5408(69)90069-5