[PDF] http://dx.doi.org/10.3952/lithjphys.51411
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 345–350 (2011)
DEEP LEVEL CONTRIBUTION TO THE
CARRIER GENERATION AND RECOMBINATION IN HIGH RESISTIVITY Si
IRRADIATED BY NEUTRONS
J. Vaitkus, R. Bondzinskas, V. Kažukauskas, P. Malinovskis, A.
Mekys, G. Mockevičius, J. Storasta, N. Vainorius, and E. Žąsinas
Institute of Applied Research
and Department of Semiconductor Physics, Vilnius University,
Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
E-mail: juozas.vaitkus@ff.vu.lt
Received 4 November 2011; revised 23 November 2011; accepted 1
December 2011
Deep level spectroscopy in neutron
irradiated FZ and MCz Si was performed by extrinsic
photoconductivity spectra measurements in the range of temperature
of 18–120 K. The Lukovsky model was used, and the Gaussian
distribution of deep level energy demonstrated the best fit of
simulation and experimental data. The nonmonotonous change of deep
levels during annealing, and non-monotonous dependence of their
concentration on the fluence were observed. The photoconductivity
decay was investigated by the transient photo-Hall effect,
recombination parameters of the main recombination centre were
determined, and the recombination centre model was proposed. The
photoconductivity and thermally stimulated current measurements
were used to demonstrate the existence of photogeneration of free
carriers by a cascade of optical and thermal transitions.
Keywords: deep levels,
radiation defects, Si, photoconductivity, thermally stimulated
current
PACS: 72.20.Jv, 72.20.My,
72.80.Cw, 71.55.Cn, 29.40.Wk
GILIŲJŲ
CENTRŲ
ĮTAKA KRŪVININKŲ GENERACIJAI IR REKOMBINACIJAI NEUTRONAIS
APŠVITINTAME DIDELĖS SPECIFINĖS VARŽOS SILICYJE
J. Vaitkus, R. Bondzinskas, V. Kažukauskas, P. Malinovskis, A.
Mekys, G. Mockevičius, J. Storasta, N. Vainorius, E. Žąsinas
Vilniaus universiteto Taikomųjų
mokslų institutas ir Puslaidininkių fizikos katedra, Vilnius,
Lietuva
Priemaišinių fotolaidumo spektrų
metodu ištirti gilieji centrai neutronais apšvitintuose FZ ir MCz
Si. Tyrimai atlikti esant 18–120 K temperatūrai. Duomenys
analizuoti panaudojant Lukovskio modelį, aproksimuojant centrų
energijų pasiskirstymą draustinėje juostoje Gauso funkcija, bei
pasiektas geras eksperimento ir modeliavimo rezultatų atitikimas.
Nustatyta, kad giliųjų centrų koncentracijos kinta nemonotoniškai
bandinius atkaitinant bei priklauso nuo apšvitos dydžio.
Fotolaidumo relaksacija buvo ištirta foto-Holo efekto metodu ir
nustatyti pagrindinio rekombinacijos centro parametrai; jo modelis
yra pasiūlytas. Fotolaidumo spektrų ir termostimuliuotų srovių
tyrimas parodė, kad nepusiausvyrūs krūvininkai gali būti
sužadinami pakopiniu mechanizmu, optiniu būdu į lokalinį lygmenį
ir termiškai iš to lygmens į zoną.
References / Nuorodos
[1] K. Wehe, Current trends in ionising radiation detectors, Nuclear
Engineering and Technology 38(4),
311–318
(2006),
http://article.nuclear.or.kr/pub/jknspaper.php?jid=JK0383111
[2] M. Moll, J. Adey, A. Al-Ajili, et al., Development of radiation
tolerant semiconductor detectors for the Super-LHC, Nucl. Instrum.
Methods A 546, 99–107
(2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044
[3] M. Huhtinen, Simulation of non-ionising energy loss and defect
formation in silicon, Nucl. Instrum. Methods. A 491, 194–215 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)01227-5
[4] G. Davies, S. Hayama, L. Murin, R. Krause-Rehberg, V.
Bondarenko, A. Sengupta, C. Davia, and A. Karpenko, Radiation damage
in silicon exposed to high-energy protons, Phys. Rev. B 73(16), 165202 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.165202
[5] L.I. Murin, J.L. Lindström, G. Davies, and V.P. Markevich,
Evolution of radiation-induced carbon–oxygen-related defects in
silicon upon annealing: LVM studies, Nucl. Instrum. Methods B 253, 210–213 (2006),
http://dx.doi.org/10.1016/j.nimb.2006.10.029
[6] E. Fretwurst, F. Hönniger, G. Kramberger, G. Lindström, I.
Pintilie, and R. Röder, Radiation damage studies on MCz and standard
and oxygen enriched epitaxial silicon devices, Nucl. Instrum.
Methods A 583, 58–63
(2007),
http://dx.doi.org/10.1016/j.nima.2007.08.194
[7] E. Gaubas, T. Čeponis, A. Uleckas, and J. Vaitkus, Anneal
dependent variations of recombination and generation lifetime in
neutron irradiated MCZ Si, Nucl. Instrum. Methods. A 612(3), 563–565 (2010),
http://dx.doi.org/10.1016/j.nima.2009.08.024
[8] D. Menichelli on behalf of the RD50 collaboration, Recent
developments of the CERN RD50 collaboration, Nucl. Instrum. Methods
A 596, 48–52 (2008),
http://dx.doi.org/10.1016/j.nima.2008.07.057
[9] V. Kažukauskas, J. Storasta, and J.V. Vaitkus, Interaction of
deep levels and potential fluctuations in scattering and
recombination phenomena in semi-insulating GaAs, J. Appl. Phys. 80(4), 2269–2278 (1996),
http://dx.doi.org/10.1063/1.363055
[10] J. Vaitkus and J. Viščakas, On the determination of parameters
of defect levels, Lith. Phys. Collect. 6(1), 59–65 (1966), [Lit. Fiz. Sbornik, in Russian]
[11] G. Lucovsky, On the photoionization of deep impurity centers in
semiconductors, Solid State Commun. 3(9), 299–302 (1965),
http://dx.doi.org/10.1016/0038-1098(65)90039-6
[12] J.L. Hastings, S.K. Estreicher, and P.A. Fedders, Vacancy
aggregates in silicon, Phys. Rev. B 56, 10215–10220 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.10215
[13] V. Kalendra, E. Gaubas, V. Kazukauskas, E. Zasinas, and J.
Vaitkus, Photoconductivity spectra and deep levels in the irradiated
p+-n-n+ Si detectors, Nucl. Instrum. Methods.
A 612, 555–558 (2010),
http://dx.doi.org/10.1016/j.nima.2009.08.043