[PDF]     http://dx.doi.org/10.3952/lithjphys.51411

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 345–350 (2011)


DEEP LEVEL CONTRIBUTION TO THE CARRIER GENERATION AND RECOMBINATION IN HIGH RESISTIVITY Si IRRADIATED BY NEUTRONS
J. Vaitkus, R. Bondzinskas, V. Kažukauskas, P. Malinovskis, A. Mekys, G. Mockevičius, J. Storasta, N. Vainorius, and E. Žąsinas
Institute of Applied Research and Department of Semiconductor Physics, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
E-mail: juozas.vaitkus@ff.vu.lt

Received 4 November 2011; revised 23 November 2011; accepted 1 December 2011

Deep level spectroscopy in neutron irradiated FZ and MCz Si was performed by extrinsic photoconductivity spectra measurements in the range of temperature of 18–120 K. The Lukovsky model was used, and the Gaussian distribution of deep level energy demonstrated the best fit of simulation and experimental data. The nonmonotonous change of deep levels during annealing, and non-monotonous dependence of their concentration on the fluence were observed. The photoconductivity decay was investigated by the transient photo-Hall effect, recombination parameters of the main recombination centre were determined, and the recombination centre model was proposed. The photoconductivity and thermally stimulated current measurements were used to demonstrate the existence of photogeneration of free carriers by a cascade of optical and thermal transitions.
Keywords: deep levels, radiation defects, Si, photoconductivity, thermally stimulated current
PACS: 72.20.Jv, 72.20.My, 72.80.Cw, 71.55.Cn, 29.40.Wk


GILIŲJŲ CENTRŲ ĮTAKA KRŪVININKŲ GENERACIJAI IR REKOMBINACIJAI NEUTRONAIS APŠVITINTAME DIDELĖS SPECIFINĖS VARŽOS SILICYJE
J. Vaitkus, R. Bondzinskas, V. Kažukauskas, P. Malinovskis, A. Mekys, G. Mockevičius, J. Storasta, N. Vainorius, E. Žąsinas
Vilniaus universiteto Taikomųjų mokslų institutas ir Puslaidininkių fizikos katedra, Vilnius, Lietuva

Priemaišinių fotolaidumo spektrų metodu ištirti gilieji centrai neutronais apšvitintuose FZ ir MCz Si. Tyrimai atlikti esant 18–120 K temperatūrai. Duomenys analizuoti panaudojant Lukovskio modelį, aproksimuojant centrų energijų pasiskirstymą draustinėje juostoje Gauso funkcija, bei pasiektas geras eksperimento ir modeliavimo rezultatų atitikimas. Nustatyta, kad giliųjų centrų koncentracijos kinta nemonotoniškai bandinius atkaitinant bei priklauso nuo apšvitos dydžio. Fotolaidumo relaksacija buvo ištirta foto-Holo efekto metodu ir nustatyti pagrindinio rekombinacijos centro parametrai; jo modelis yra pasiūlytas. Fotolaidumo spektrų ir termostimuliuotų srovių tyrimas parodė, kad nepusiausvyrūs krūvininkai gali būti sužadinami pakopiniu mechanizmu, optiniu būdu į lokalinį lygmenį ir termiškai iš to lygmens į zoną.


References / Nuorodos

[1] K. Wehe, Current trends in ionising radiation detectors, Nuclear Engineering and Technology 38(4), 311–318 (2006),
http://article.nuclear.or.kr/pub/jknspaper.php?jid=JK0383111
[2] M. Moll, J. Adey, A. Al-Ajili, et al., Development of radiation tolerant semiconductor detectors for the Super-LHC, Nucl. Instrum. Methods A 546, 99–107 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044
[3] M. Huhtinen, Simulation of non-ionising energy loss and defect formation in silicon, Nucl. Instrum. Methods. A 491, 194–215 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)01227-5
[4] G. Davies, S. Hayama, L. Murin, R. Krause-Rehberg, V. Bondarenko, A. Sengupta, C. Davia, and A. Karpenko, Radiation damage in silicon exposed to high-energy protons, Phys. Rev. B 73(16), 165202 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.165202
[5] L.I. Murin, J.L. Lindström, G. Davies, and V.P. Markevich, Evolution of radiation-induced carbon–oxygen-related defects in silicon upon annealing: LVM studies, Nucl. Instrum. Methods B 253, 210–213 (2006),
http://dx.doi.org/10.1016/j.nimb.2006.10.029
[6] E. Fretwurst, F. Hönniger, G. Kramberger, G. Lindström, I. Pintilie, and R. Röder, Radiation damage studies on MCz and standard and oxygen enriched epitaxial silicon devices, Nucl. Instrum. Methods A 583, 58–63 (2007),
http://dx.doi.org/10.1016/j.nima.2007.08.194
[7] E. Gaubas, T. Čeponis, A. Uleckas, and J. Vaitkus, Anneal dependent variations of recombination and generation lifetime in neutron irradiated MCZ Si, Nucl. Instrum. Methods. A 612(3), 563–565 (2010),
http://dx.doi.org/10.1016/j.nima.2009.08.024
[8] D. Menichelli on behalf of the RD50 collaboration, Recent developments of the CERN RD50 collaboration, Nucl. Instrum. Methods A 596, 48–52 (2008),
http://dx.doi.org/10.1016/j.nima.2008.07.057
[9] V. Kažukauskas, J. Storasta, and J.V. Vaitkus, Interaction of deep levels and potential fluctuations in scattering and recombination phenomena in semi-insulating GaAs, J. Appl. Phys. 80(4), 2269–2278 (1996),
http://dx.doi.org/10.1063/1.363055
[10] J. Vaitkus and J. Viščakas, On the determination of parameters of defect levels, Lith. Phys. Collect. 6(1), 59–65 (1966), [Lit. Fiz. Sbornik, in Russian]
[11] G. Lucovsky, On the photoionization of deep impurity centers in semiconductors, Solid State Commun. 3(9), 299–302 (1965),
http://dx.doi.org/10.1016/0038-1098(65)90039-6
[12] J.L. Hastings, S.K. Estreicher, and P.A. Fedders, Vacancy aggregates in silicon, Phys. Rev. B 56, 10215–10220 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.10215
[13] V. Kalendra, E. Gaubas, V. Kazukauskas, E. Zasinas, and J. Vaitkus, Photoconductivity spectra and deep levels in the irradiated p+-n-n+ Si detectors, Nucl. Instrum. Methods. A 612, 555–558 (2010),
http://dx.doi.org/10.1016/j.nima.2009.08.043