[PDF] http://dx.doi.org/10.3952/lithjphys.51412
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 351–358 (2011)
CARRIER DRIFT AND DIFFUSION
CHARACTERISTICS OF Si PARTICLE DETECTORS MEASURED IN SITU DURING 8 MeV PROTON
IRRADIATION
E. Gaubas a, T. Čeponis a, J. Vaitkus
a, and J. Raisanen b
a Vilnius
University, Institute of Applied Research, Saulėtekio 9-III,
LT-10222 Vilnius, Lithuania
E-mail: eugenijus.gaubas@ff.vu.lt
b Division of
Materials Physics, Department of Physics, University of
Helsinki, Finland
Received 13 June 2011;
revised 18 November 2011; accepted 1 December 2011
The carrier drift and
recombination parameters determine the functional characteristics
of Si high energy particle detectors. In this work, techniques for
the in situ control of drift–diffusion current transients during 8
MeV proton irradiation are discussed. The characteristics obtained
in silicon particle detectors and carrier drift–diffusion and
generation parameters variations during proton exposure are
analysed. The models of current transients within a depleted diode
with the drifting-induced charge domain at low and high densities
of light excited excess carriers within the diode base region have
been proposed. A small impact of radiation defects on carrier
drift/diffusion parameters and more complex variations of excess
carrier recombination/trapping lifetimes during irradiation have
been revealed.
Keywords: carrier drift,
diffusion and recombination, current transients, particle detectors,
radiation defects
PACS: 72.20.Jv, 71.55.Eq
KRŪVININKŲ DREIFO IR DIFUZIJOS
Si DALELIŲ DETEKTORIUOSE CHARAKTERISTIKOS, IŠMATUOTOS 8 MeV
PROTONŲ APŠVITOS METU
E. Gaubas a, T. Čeponis
a, J. Vaitkus a, J. Raisanen b
a Vilniaus
universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva
b Helsinkio
universiteto Fizikos skyriaus Medžiagų fizikos sektorius,
Helsinkis, Suomija
Krūvininkų dreifo ir difuzijos
charakteristikos lemia aukštųjų energijų dalelių detektorių
funkcinius parametrus. Šiame darbe aptarta in situ kontrolės įranga
difuzijos-dreifo parametrams, švitinant 8 MeV energijos protonais,
įvertinti. Ši įranga pagrįsta mikrobangomis zonduojamo fotolaidumo
ir krūvio surinkimo kinetikų vienalaikiais matavimais pridėjus
užtvarinę įtampą. Įvertinta, kad elektronų judris beveik
nepriklauso nuo apšvitos protonais įtėkio, o elektronų judrio
vertė yra μe ≅ 1300 cm2/Vs.
Krūvininkų rekombinacijos trukmė mažėja tiesiškai pradinių
apšvitos protonais ekspozicijų intervale, tačiau pradeda sotintis
tęsiant apšvitą didelių įtėkių srityje. Tai paaiškinta
daugkartinio krūvininkų prilipimo procesais, kai veikia keletas
centrų (prilipimo ir rekombinacinių) apšvitos metu formuojantis
taškiniams defektams. Eksperimentinių rezultatų analizei pasiūlyti
srovės kinetikų modeliai, kai yra pridėtos įtampos iki ir virš
visiško detektoriaus bazės nuskurdinimo. Taip pat sumodeliuotos
krūvio surinkimo srovės kinetikos esant įvairiems nepusiausvirųjų
krūvininkų tankiams.
References / Nuorodos
[1] I. Pintilie, E. Fretwurst, G. Lindström, and J. Stahl,
Second-order generation of point defects in gamma-irradiated
float-zone silicon, an explanation for “type inversion”, Appl. Phys.
Lett. 82, 2169–2171 (2003),
http://dx.doi.org/10.1063/1.1564869
[2] M. Mikelsen, J.H. Bleka, J.S. Christensen, E.V. Monakhov, B.G.
Svensson, J. Härkönen, and B. Avset, Annealing of the
divacancy-oxygen and vacancy-oxygen complexes in silicon, Phys. Rev.
B 75, 155202 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.155202
[3] M. Scaringella, D. Menichelli, A. Candelori, R. Rando, and M.
Bruzzi, Defect characterization in silicon particle detectors
irradiated with Li ions, IEEE Trans. Nucl. Sci. 53, 589–594 (2006),
http://dx.doi.org/10.1109/TNS.2006.873216
[4] V. Eremin, N. Strokan, E. Verbitskaya, and Z. Li, Development of
transient current and charge techniques for the measurement of
effective net concentration of ionized charges (Neff) in the space
charge region of p-n junction detectors, Nucl. Instrum. Methods A 372, 388–398 (1996),
http://dx.doi.org/10.1016/0168-9002(95)01295-8
[5] J. Härkönen, V. Eremin, E. Verbitskaya, S. Czellar, P. Pusa, Z.
Li, and T.O. Niinikoski, The cryogenic transient current technique
(C-TCT) measurement setup of CERN RD39 collaboration, Nucl. Instrum.
Methods A 581, 347–350
(2007),
http://dx.doi.org/10.1016/j.nima.2007.08.001
[6] V. Eremin and Z. Li, Carrier drift mobility study in neutron
irradiated high purity silicon, Nucl. Instrum. Methods A 362, 338–343 (1995),
http://dx.doi.org/10.1016/0168-9002(95)00381-9
[7] C. Leroy, P. Roy, G. Casse, M. Glaser, E. Grigoriev, and F.
Lemeilleur, Study of charge transport in non-irradiated and
irradiated silicon detectors, Nucl. Instrum. Methods A 426, 99–108 (1999),
http://dx.doi.org/10.1016/S0168-9002(98)01478-8
[8] T.J. Brodbeck, A. Chilingarov, T. Sloan, E. Fretwurst, M.
Kuhnke, and G. Lindstroem, Carrier mobilities in irradiated silicon,
Nucl. Instrum. Methods A 477,
287–282 (2002),
http://dx.doi.org/10.1016/S0168-9002(01)01858-7
[9] E. Gaubas, A. Uleckas, J. Vaitkus, J. Raisanen, and P. Tikkanen,
Instrumentation for the in situ
control of carrier recombination characteristics during irradiation
by protons, Rev. Sci. Instrum. 81,
053303 (2010),
http://dx.doi.org/10.1063/1.3429944
[10] S. Väyrynen, J. Räisänen, I. Kassamakov, and E. Tuominen,
Breakdown of silicon particle detectors under proton irradiation, J.
Appl. Phys. 106, 104914
(2009),
http://dx.doi.org/10.1063/1.3262611
[11] G. Cavalleri, E. Gatti, G. Fabri, and V. Svelto, Extension of
Ramo’s theorem as applied to induced charge in semiconductor
detectors, Nucl. Instrum. Methods 92,
137–140 (1971),
http://dx.doi.org/10.1016/0029-554X(71)90235-7
[12] P. De Visschere, The validity of Ramo’s theorem, Solid State
Electron. 33, 455–459 (1990),
http://dx.doi.org/10.1016/0038-1101(90)90050-O
[13] L.-A. Hamel and M. Julien, Generalized demonstration of Ramo’s
theorem with space charge and polarization effects, Nucl. Instrum.
Methods A 597, 207–211
(2008),
http://dx.doi.org/10.1016/j.nima.2008.09.008
[14] I.V. Kotov, Currents induced by charges moving in
semiconductor, Nucl. Instrum. Methods A 539, 267–268 (2005),
http://dx.doi.org/10.1016/j.nima.2004.10.021
[15] P. Blood and J.W. Orton, The
Electrical Characterization of Semiconductors: Majority Carriers
and Electron States (Academic Press, London – San Diego –
New York, 1992),
http://www.amazon.com/Electrical-Characterization-Semiconductors-Majority-Techniques/dp/0125286279/
[16] B.Y. Baliga, Power
Semiconductor Devices (PWS Publishing Company, Boston,
1995),
http://www.amazon.com/Power-Semiconductor-Devices-General-Engineering/dp/0534940986/
[17] S. Ramo, Currents induced by electron motion, Proc. Inst. Radio
Eng. 27, 584–585 (1939),
http://dx.doi.org/10.1109/JRPROC.1939.228757
[18] R.A. Smith, Semiconductors,
2nd ed. (Cambridge Univ. Press, London – New York, 1978),
http://www.cambridge.org/en/knowledge/isbn/item1130909/