[PDF]     http://dx.doi.org/10.3952/lithjphys.51412

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 351–358 (2011)


CARRIER DRIFT AND DIFFUSION CHARACTERISTICS OF Si PARTICLE DETECTORS MEASURED IN SITU DURING 8 MeV PROTON IRRADIATION
E. Gaubas a, T. Čeponis a, J. Vaitkus a, and J. Raisanen b
a Vilnius University, Institute of Applied Research, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
E-mail: eugenijus.gaubas@ff.vu.lt
b Division of Materials Physics, Department of Physics, University of Helsinki, Finland

Received 13 June 2011; revised 18 November 2011; accepted 1 December 2011

The carrier drift and recombination parameters determine the functional characteristics of Si high energy particle detectors. In this work, techniques for the in situ control of drift–diffusion current transients during 8 MeV proton irradiation are discussed. The characteristics obtained in silicon particle detectors and carrier drift–diffusion and generation parameters variations during proton exposure are analysed. The models of current transients within a depleted diode with the drifting-induced charge domain at low and high densities of light excited excess carriers within the diode base region have been proposed. A small impact of radiation defects on carrier drift/diffusion parameters and more complex variations of excess carrier recombination/trapping lifetimes during irradiation have been revealed.
Keywords: carrier drift, diffusion and recombination, current transients, particle detectors, radiation defects
PACS: 72.20.Jv, 71.55.Eq


KRŪVININKŲ DREIFO IR DIFUZIJOS Si DALELIŲ DETEKTORIUOSE CHARAKTERISTIKOS, IŠMATUOTOS 8 MeV PROTONŲ APŠVITOS METU
E. Gaubas a, T. Čeponis a, J. Vaitkus a, J. Raisanen b
a Vilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva
b Helsinkio universiteto Fizikos skyriaus Medžiagų fizikos sektorius, Helsinkis, Suomija

Krūvininkų dreifo ir difuzijos charakteristikos lemia aukštųjų energijų dalelių detektorių funkcinius parametrus. Šiame darbe aptarta in situ kontrolės įranga difuzijos-dreifo parametrams, švitinant 8 MeV energijos protonais, įvertinti. Ši įranga pagrįsta mikrobangomis zonduojamo fotolaidumo ir krūvio surinkimo kinetikų vienalaikiais matavimais pridėjus užtvarinę įtampą. Įvertinta, kad elektronų judris beveik nepriklauso nuo apšvitos protonais įtėkio, o elektronų judrio vertė yra μe ≅ 1300 cm2/Vs. Krūvininkų rekombinacijos trukmė mažėja tiesiškai pradinių apšvitos protonais ekspozicijų intervale, tačiau pradeda sotintis tęsiant apšvitą didelių įtėkių srityje. Tai paaiškinta daugkartinio krūvininkų prilipimo procesais, kai veikia keletas centrų (prilipimo ir rekombinacinių) apšvitos metu formuojantis taškiniams defektams. Eksperimentinių rezultatų analizei pasiūlyti srovės kinetikų modeliai, kai yra pridėtos įtampos iki ir virš visiško detektoriaus bazės nuskurdinimo. Taip pat sumodeliuotos krūvio surinkimo srovės kinetikos esant įvairiems nepusiausvirųjų krūvininkų tankiams.


References / Nuorodos

[1] I. Pintilie, E. Fretwurst, G. Lindström, and J. Stahl, Second-order generation of point defects in gamma-irradiated float-zone silicon, an explanation for “type inversion”, Appl. Phys. Lett. 82, 2169–2171 (2003),
http://dx.doi.org/10.1063/1.1564869
[2] M. Mikelsen, J.H. Bleka, J.S. Christensen, E.V. Monakhov, B.G. Svensson, J. Härkönen, and B. Avset, Annealing of the divacancy-oxygen and vacancy-oxygen complexes in silicon, Phys. Rev. B 75, 155202 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.155202
[3] M. Scaringella, D. Menichelli, A. Candelori, R. Rando, and M. Bruzzi, Defect characterization in silicon particle detectors irradiated with Li ions, IEEE Trans. Nucl. Sci. 53, 589–594 (2006),
http://dx.doi.org/10.1109/TNS.2006.873216
[4] V. Eremin, N. Strokan, E. Verbitskaya, and Z. Li, Development of transient current and charge techniques for the measurement of effective net concentration of ionized charges (Neff) in the space charge region of p-n junction detectors, Nucl. Instrum. Methods A 372, 388–398 (1996),
http://dx.doi.org/10.1016/0168-9002(95)01295-8
[5] J. Härkönen, V. Eremin, E. Verbitskaya, S. Czellar, P. Pusa, Z. Li, and T.O. Niinikoski, The cryogenic transient current technique (C-TCT) measurement setup of CERN RD39 collaboration, Nucl. Instrum. Methods A 581, 347–350 (2007),
http://dx.doi.org/10.1016/j.nima.2007.08.001
[6] V. Eremin and Z. Li, Carrier drift mobility study in neutron irradiated high purity silicon, Nucl. Instrum. Methods A 362, 338–343 (1995),
http://dx.doi.org/10.1016/0168-9002(95)00381-9
[7] C. Leroy, P. Roy, G. Casse, M. Glaser, E. Grigoriev, and F. Lemeilleur, Study of charge transport in non-irradiated and irradiated silicon detectors, Nucl. Instrum. Methods A 426, 99–108 (1999),
http://dx.doi.org/10.1016/S0168-9002(98)01478-8
[8] T.J. Brodbeck, A. Chilingarov, T. Sloan, E. Fretwurst, M. Kuhnke, and G. Lindstroem, Carrier mobilities in irradiated silicon, Nucl. Instrum. Methods A 477, 287–282 (2002),
http://dx.doi.org/10.1016/S0168-9002(01)01858-7
[9] E. Gaubas, A. Uleckas, J. Vaitkus, J. Raisanen, and P. Tikkanen, Instrumentation for the in situ control of carrier recombination characteristics during irradiation by protons, Rev. Sci. Instrum. 81, 053303 (2010),
http://dx.doi.org/10.1063/1.3429944
[10] S. Väyrynen, J. Räisänen, I. Kassamakov, and E. Tuominen, Breakdown of silicon particle detectors under proton irradiation, J. Appl. Phys. 106, 104914 (2009),
http://dx.doi.org/10.1063/1.3262611
[11] G. Cavalleri, E. Gatti, G. Fabri, and V. Svelto, Extension of Ramo’s theorem as applied to induced charge in semiconductor detectors, Nucl. Instrum. Methods 92, 137–140 (1971),
http://dx.doi.org/10.1016/0029-554X(71)90235-7
[12] P. De Visschere, The validity of Ramo’s theorem, Solid State Electron. 33, 455–459 (1990),
http://dx.doi.org/10.1016/0038-1101(90)90050-O
[13] L.-A. Hamel and M. Julien, Generalized demonstration of Ramo’s theorem with space charge and polarization effects, Nucl. Instrum. Methods A 597, 207–211 (2008),
http://dx.doi.org/10.1016/j.nima.2008.09.008
[14] I.V. Kotov, Currents induced by charges moving in semiconductor, Nucl. Instrum. Methods A 539, 267–268 (2005),
http://dx.doi.org/10.1016/j.nima.2004.10.021
[15] P. Blood and J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, London – San Diego – New York, 1992),
http://www.amazon.com/Electrical-Characterization-Semiconductors-Majority-Techniques/dp/0125286279/
[16] B.Y. Baliga, Power Semiconductor Devices (PWS Publishing Company, Boston, 1995),
http://www.amazon.com/Power-Semiconductor-Devices-General-Engineering/dp/0534940986/
[17] S. Ramo, Currents induced by electron motion, Proc. Inst. Radio Eng. 27, 584–585 (1939),
http://dx.doi.org/10.1109/JRPROC.1939.228757
[18] R.A. Smith, Semiconductors, 2nd ed. (Cambridge Univ. Press, London – New York, 1978),
http://www.cambridge.org/en/knowledge/isbn/item1130909/