[PDF] http://dx.doi.org/10.3952/lithjphys.51413
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 359–369 (2011)
TRENDS OF ATMOSPHERIC HEAVY
METAL DEPOSITION IN LITHUANIA
K. Kvietkus, J. Šakalys, and D. Valiulis
State Research Institute Center
for Physical Sciences and Technology, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: kvietkus@ktl.mii.lt
Received 28 July 2011; revised 28 November 2011; accepted 1
December 2011
The results of long-term
measurements of heavy metal (Pb, Zn, Cr, Ni, Cu, Mn, Cd, Fe, As,
Hg) concentrations carried out at the Aukštaitija and Žemaitija
integrated monitoring stations (IMS) are presented in this work.
The average annual concentrations of heavy metals in the air in
2007–2008 and in precipitation over the period 2006–2010 are
analysed. A higher deposited amount of heavy metals on the Earth’s
surface was determined in the western part of Lithuania (Žemaitija
IMS) compared with the eastern part of Lithuania (Aukštaitija
IMS). Different deposited amounts of heavy metals are related to
higher concentration of heavy metals in the air and higher amounts
of precipitation in the western part of Lithuania. A decreasing
trend of Pb concentration in precipitation and an increasing trend
for Cr, Ni and Cu in precipitation and deposited amounts were
observed at both stations. Common correlating groups of element
concentrations for both stations were established: As–Cd,
Ni–Cr–Cu, and Mn–Cu. These groups are probably typical of the
entire territory of Lithuania and are caused by long-range
transfer of air masses.
Keywords: heavy metals,
concentration, air, precipitation, deposition, trend
PACS: 92.60.Sz, 92.60.Fm,
92.60.Jq, 92.70.Cr
SUNKIŲJŲ METALŲ NUSĖDIMO IŠ
ATMOSFEROS TENDENCIJOS LIETUVOJE
K. Kvietkus, J. Šakalys, D. Valiulis
Fizinių ir technologijos mokslų
centras, Vilnius, Lietuva
Pateikti ilgalaikių sunkiųjų
metalų (Pb, Zn, Cr, Ni, Cu, Mn, Cd, Fe, As, Hg) koncentracijų
matavimų Aukštaitijos ir Žemaitijos integruoto monitoringo stotyse
(IMS) rezultatai. Vidutinės metinės sunkiųjų metalų koncentracijos
ore ir krituliuose eigos analizė pateikta 2006–2010 metams.
Vakarinėje Lietuvos dalyje nustatyta didesnė žemės paviršiaus
apkrova sunkiaisiais metalais negu rytinėje dalyje. Tikriausiai
šis paviršiaus apkrovos skirtumas susidarė dėl didesnės sunkiųjų
metalų koncentracijos ore ir didesnio kritulių kiekio vakarinėje
Lietuvos dalyje. Stebėta Pb koncentracijos krituliuose mažėjimo
tendencija abiejose IMS bei Cr, Ni ir Cu koncentracijos
krituliuose ir iškritose į žemės paviršių didėjimo tendencija
abiejose stotyse. Nustatytos bendros koreliuojančių metalų As–Cd,
Ni–Cr–Cu ir Mn–Cu koncentracijų grupės abiems stotims.
Tikimiausia, kad šios grupės yra būdingos visai Lietuvos
teritorijai ir yra nulemtos tolimosios oro masių pernašos.
References / Nuorodos
[1] W. Salomons and U. Förstner, Metals in the Hydrocycle (Springer-Verlag, Berlin,
1984),
http://www.amazon.co.uk/Metals-Hydrocycle-W-Salomons/dp/3540127550/
[2] J.N. Galloway, J.D. Thornton, S.A. Norton, H.L. Volchok, and
R.A.N. McLean, Trace metals in atmospheric deposition: A review and
assessment, Atmos. Environ. 16,
1677–1700 (1982),
http://dx.doi.org/10.1016/0004-6981(82)90262-1
[3] W.H. Schroeder, M. Dobson, D.M. Kane, and N.D. Johnson, Toxic
trace elements associated with airborne particulate matter: a
review, J. Air Pollut. Contr. Assoc. 37, 1267–1285 (1987),
http://www.worldcat.org/title/toxic-trace-elements-associated-with-airborne-particulate-matter-a-review/oclc/116717458
[4] H.B. Ross, Trace metals in precipitation in Sweden, Water Air
Soil Pollut. 36, 349–363
(1987),
http://dx.doi.org/10.1007/BF00229677
[5] T. Berg, O. Røyset, and E. Steinnes, Trace elements in
atmospheric precipitation at Norwegian background stations
(1989–1990) measured by ICPMS, Atmos. Environ. 28(21), 3519–3536 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90009-4
[6] Å. Iverfeldt, J. Munthe, C. Brosset, and J. Pacyna, Long-term
changes in concentration and deposition of atmospheric mercury over
Scandinavia, Water Air Soil Pollut. 80, 227–233 (1995),
http://dx.doi.org/10.1007/BF01189672
[7] D. Schwela, Air pollution and health in urban areas, Rev.
Environ. Health 15, 13–42
(2000),
http://dx.doi.org/10.1515/REVEH.2000.15.1-2.13
[8] J. Ovadnevaitė, K. Kvietkus, and A. Maršalka, 2002 summer fires
in Lithuania: Impact on the Vilnius city air quality and the
inhabitants health, Sci. Total Environ. 356(1–3), 11–21 (2006),
http://dx.doi.org/10.1016/j.scitotenv.2005.04.013
[9] H.B. Ross and S.J. Vermette, Precipitation, in: Trace Metals in Natural Waters,
eds. B.S. Salbu and E. Steinnes (CRC Press, 1995),
http://www.crcpress.com/product/isbn/9780849363047
[10] S. Garnaud, J.M. Mouchel, G. Chebbo, and D.R. Thévenot, Heavy
metal concentrations in dry and wet atmospheric deposits in Paris
district: comparison with urban runoff, Sci. Total Environ. 235(1–3), 235–245 (1999),
http://dx.doi.org/10.1016/S0048-9697(99)00199-0
[11] M. Mircea, S. Stefan, and S. Fuzzi, Precipitation scavenging
coefficient: influence of measured aerosol and raindrop size
distributions, Atmos. Environ. 34(29–30),
5169–5174
(2000),
http://dx.doi.org/10.1016/S1352-2310(00)00199-0
[12] D. Čeburnis, Qualitative and quantitative estimation of
atmospheric trace metal deposition, PhD thesis (Institute of
Physics, Vilnius, Lithuania, 1997)
[13] D. Čeburnis, D. Valiulis, and J. Šakalys, The influence of
local processes on trace metal concentrations in long-range
transported air masses, Environ. Chem. Phys. 21(1), 31–36 (1999)
[14] J. Šakalys, K. Kvietkus, and D. Valiulis, Variation tendencies
of heavy metal concentrations in the air and precipitation, Environ.
Chem. Phys. 26(2), 61–67
(2004)
[15] D. Šopauskienė, D. Jasinevičienė, and S. Stapčinskaitė, The
effect of changes in European anthropogenic emissions on the
concentrations of sulphur and nitrogen components in air and
precipitation in Lithuania, Water Air Soil Pollut. 130(1–4) (2001), pp. 517–522,
http://dx.doi.org/10.1023/A:1013826411072
[16] Y. Gélinas, M. Luccote, and J.P. Schmit, History of the
atmospheric deposition of major and trace elements in the
industrialized St. Lawrence Valley, Quebec, Canada, Atmos. Environ.
34, 1797–1810 (2000),
http://dx.doi.org/10.1016/S1352-2310(99)00336-2
[17] Å. Rühling and G. Tyler, Changes in atmospheric deposition
rates of heavy metals in Sweden, Water Air Soil Pollut. Focus 1, 311–323 (2001),
http://dx.doi.org/10.1023/A:1017584928458
[18] D. Čeburnis, J. Šakalys, K. Armolaitis, D. Valiulis, and K.
Kvietkus, In-stack emissions of heavy metals estimated by moss
biomonitoring method and snow-pack analysis, Atmos. Environ. 36(9), 1465–1474 (2002),
http://dx.doi.org/10.1016/S1352-2310(01)00577-5
[19] D. Valiulis, D. Čeburnis, J. Šakalys, and K. Kvietkus,
Estimation of atmospheric trace metal emissions in Vilnius City,
Lithuania, using vertical concentration gradient and road tunnel
measurement data, Atmos. Environ. 36(39–40),
6001–6014 (2002),
http://dx.doi.org/10.1016/S1352-2310(02)00764-1
[20] E. Steinnes, T. Berg, and T.E. Sjobakk, Temporal trends in
long-range atmospheric transport of heavy metals to Norway, J. Phys.
IV France 107, 1271 (2003),
http://dx.doi.org/10.1051/jp4:20030532
[21] C.S.C. Wong, X.D. Li, G. Zhang, S.H. Qi, and X.Z. Peng,
Atmospheric deposition of heavy metals in the Pearl River Delta,
China, Atmos. Environ. 37,
767–776 (2003),
http://dx.doi.org/10.1016/S1352-2310(02)00929-9
[22] E.C. Krug and D. Winstanley, Comparison of mercury in
atmospheric deposition and in Illinois and USA soils, Hydrol. Earth
Syst. Sci. 8(1), 98–102
(2004),
http://dx.doi.org/
[23] S. Azimi, V. Rocher, S. Garnaud, G. Varrault, and D.R.
Thevenot, Decrease of atmospheric deposition of heavy metals in an
urban area from 1994 to 2002 (Paris, France), Chemosphere 61, 645–651 (2005),
http://dx.doi.org/10.1016/j.chemosphere.2005.03.022
[24] S. Melaku, V. Morris, D. Raghavan, and C. Hosten, Seasonal
variation of heavy metals in ambient air and precipitation at a
single site in Washington, DC, Environ. Pollut. 155, 88–98 (2007),
http://dx.doi.org/10.1016/j.envpol.2007.10.038
[25] J. Šakalys, K. Kvietkus, J. Sucharová, I. Suchara, and D.
Valiulis, Changes in total concentrations and assessed background
concentrations of heavy metals in moss in Lithuania and the Czech
Republic between 1995 and 2005, Chemosphere 76(1), 91–97 (2009),
http://dx.doi.org/10.1016/j.chemosphere.2009.02.009
[26] J.M. Caffrey, W.M. Landing, S.D. Nolek, K.J. Gosnell, S.S.
Bagui, and S.C. Bagui, Atmospheric deposition of mercury and major
ions to the Pensacola (Florida) watershed: spatial, seasonal, and
inter-annual variability, Atmos. Chem. Phys. 10, 5425–5434 (2010),
http://dx.doi.org/
[27] H. Harmens, D.A. Norris, E. Steinnes, E. Kubin, J. Piispanen,
R. Alber, Y. Aleksiayenak, O. Blum, M. Coşkun, M. Dam, L. De
Temmerman, J.A. Fernández, M. Frolova, M. Frontasyeva, L.
González-Miqueo, K. Grodzińska, Z. Jeran, S. Korzekwa, M. Krmar, K.
Kvietkus, S. Leblond, S. Liiv, S.H. Magnússon, B. Maňkovská, R.
Pesch, Å. Rühling, J.M. Santamaria, W. Schröder, Z. Spiric, I.
Suchara, L. Thöni, V. Urumov, L. Yurukova, and H.G. Zechmeister,
Mosses as biomonitors of atmospheric heavy metal deposition: Spatial
patterns and temporal trends in Europe, Environ. Pollut. 158, 3144–3156 (2010),
http://dx.doi.org/10.1016/j.envpol.2010.06.039
[28] B.S. Davis and G.F. Birch, Spatial distribution of bulk
atmospheric deposition of heavy metals in Metropolitan Sydney,
Australia, Water, Air, Soil Pollut. 214, 147–162 (2011),
http://dx.doi.org/10.1007/s11270-010-0411-3
[29] D. Čeburnis, Atmospheric trace metal deposition in Lithuania:
methods and estimation, in: Heavy
Metals in the Environment: an Integrated Approach, ed. D.A.
Lovejoy (Vilnius, Lithuania, 1999), pp. 5–15
[30] J. Šakalys, J. Švedkauskaitė, and D. Valiulis, Estimation of
heavy metal washout from the atmosphere, Environ. Chem. Phys, 25(1), 16–22 (2003)
[31] R.R. Socal and F.J. Rohlf, Introduction
to
Biostatistics (W.H. Freeman & Company, New York, 1987),
pp. 322–328,
http://www.amazon.co.uk/Introduction-Biostatistics-Biology-Statistics-Series-Robert/dp/0716718057/