[PDF]     http://dx.doi.org/10.3952/lithjphys.51413

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 359–369 (2011)


TRENDS OF ATMOSPHERIC HEAVY METAL DEPOSITION IN LITHUANIA
K. Kvietkus, J. Šakalys, and D. Valiulis
State Research Institute Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: kvietkus@ktl.mii.lt

Received 28 July 2011; revised 28 November 2011; accepted 1 December 2011

The results of long-term measurements of heavy metal (Pb, Zn, Cr, Ni, Cu, Mn, Cd, Fe, As, Hg) concentrations carried out at the Aukštaitija and Žemaitija integrated monitoring stations (IMS) are presented in this work. The average annual concentrations of heavy metals in the air in 2007–2008 and in precipitation over the period 2006–2010 are analysed. A higher deposited amount of heavy metals on the Earth’s surface was determined in the western part of Lithuania (Žemaitija IMS) compared with the eastern part of Lithuania (Aukštaitija IMS). Different deposited amounts of heavy metals are related to higher concentration of heavy metals in the air and higher amounts of precipitation in the western part of Lithuania. A decreasing trend of Pb concentration in precipitation and an increasing trend for Cr, Ni and Cu in precipitation and deposited amounts were observed at both stations. Common correlating groups of element concentrations for both stations were established: As–Cd, Ni–Cr–Cu, and Mn–Cu. These groups are probably typical of the entire territory of Lithuania and are caused by long-range transfer of air masses.
Keywords: heavy metals, concentration, air, precipitation, deposition, trend
PACS: 92.60.Sz, 92.60.Fm, 92.60.Jq, 92.70.Cr


SUNKIŲJŲ METALŲ NUSĖDIMO IŠ ATMOSFEROS TENDENCIJOS LIETUVOJE
K. Kvietkus, J. Šakalys, D. Valiulis
Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Pateikti ilgalaikių sunkiųjų metalų (Pb, Zn, Cr, Ni, Cu, Mn, Cd, Fe, As, Hg) koncentracijų matavimų Aukštaitijos ir Žemaitijos integruoto monitoringo stotyse (IMS) rezultatai. Vidutinės metinės sunkiųjų metalų koncentracijos ore ir krituliuose eigos analizė pateikta 2006–2010 metams. Vakarinėje Lietuvos dalyje nustatyta didesnė žemės paviršiaus apkrova sunkiaisiais metalais negu rytinėje dalyje. Tikriausiai šis paviršiaus apkrovos skirtumas susidarė dėl didesnės sunkiųjų metalų koncentracijos ore ir didesnio kritulių kiekio vakarinėje Lietuvos dalyje. Stebėta Pb koncentracijos krituliuose mažėjimo tendencija abiejose IMS bei Cr, Ni ir Cu koncentracijos krituliuose ir iškritose į žemės paviršių didėjimo tendencija abiejose stotyse. Nustatytos bendros koreliuojančių metalų As–Cd, Ni–Cr–Cu ir Mn–Cu koncentracijų grupės abiems stotims. Tikimiausia, kad šios grupės yra būdingos visai Lietuvos teritorijai ir yra nulemtos tolimosios oro masių pernašos.


References / Nuorodos

[1] W. Salomons and U. Förstner, Metals in the Hydrocycle (Springer-Verlag, Berlin, 1984),
http://www.amazon.co.uk/Metals-Hydrocycle-W-Salomons/dp/3540127550/
[2] J.N. Galloway, J.D. Thornton, S.A. Norton, H.L. Volchok, and R.A.N. McLean, Trace metals in atmospheric deposition: A review and assessment, Atmos. Environ. 16, 1677–1700 (1982),
http://dx.doi.org/10.1016/0004-6981(82)90262-1
[3] W.H. Schroeder, M. Dobson, D.M. Kane, and N.D. Johnson, Toxic trace elements associated with airborne particulate matter: a review, J. Air Pollut. Contr. Assoc. 37, 1267–1285 (1987), 
http://www.worldcat.org/title/toxic-trace-elements-associated-with-airborne-particulate-matter-a-review/oclc/116717458
[4] H.B. Ross, Trace metals in precipitation in Sweden, Water Air Soil Pollut. 36, 349–363 (1987),
http://dx.doi.org/10.1007/BF00229677
[5] T. Berg, O. Røyset, and E. Steinnes, Trace elements in atmospheric precipitation at Norwegian background stations (1989–1990) measured by ICPMS, Atmos. Environ. 28(21), 3519–3536 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90009-4
[6] Å. Iverfeldt, J. Munthe, C. Brosset, and J. Pacyna, Long-term changes in concentration and deposition of atmospheric mercury over Scandinavia, Water Air Soil Pollut. 80, 227–233 (1995),
http://dx.doi.org/10.1007/BF01189672
[7] D. Schwela, Air pollution and health in urban areas, Rev. Environ. Health 15, 13–42 (2000),
http://dx.doi.org/10.1515/REVEH.2000.15.1-2.13
[8] J. Ovadnevaitė, K. Kvietkus, and A. Maršalka, 2002 summer fires in Lithuania: Impact on the Vilnius city air quality and the inhabitants health, Sci. Total Environ. 356(1–3), 11–21 (2006),
http://dx.doi.org/10.1016/j.scitotenv.2005.04.013
[9] H.B. Ross and S.J. Vermette, Precipitation, in: Trace Metals in Natural Waters, eds. B.S. Salbu and E. Steinnes (CRC Press, 1995),
http://www.crcpress.com/product/isbn/9780849363047
[10] S. Garnaud, J.M. Mouchel, G. Chebbo, and D.R. Thévenot, Heavy metal concentrations in dry and wet atmospheric deposits in Paris district: comparison with urban runoff, Sci. Total Environ. 235(1–3), 235–245 (1999),
http://dx.doi.org/10.1016/S0048-9697(99)00199-0
[11] M. Mircea, S. Stefan, and S. Fuzzi, Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions, Atmos. Environ. 34(29–30), 5169–5174 (2000),
http://dx.doi.org/10.1016/S1352-2310(00)00199-0
[12] D. Čeburnis, Qualitative and quantitative estimation of atmospheric trace metal deposition, PhD thesis (Institute of Physics, Vilnius, Lithuania, 1997)
[13] D. Čeburnis, D. Valiulis, and J. Šakalys, The influence of local processes on trace metal concentrations in long-range transported air masses, Environ. Chem. Phys. 21(1), 31–36 (1999)
[14] J. Šakalys, K. Kvietkus, and D. Valiulis, Variation tendencies of heavy metal concentrations in the air and precipitation, Environ. Chem. Phys. 26(2), 61–67 (2004)
[15] D. Šopauskienė, D. Jasinevičienė, and S. Stapčinskaitė, The effect of changes in European anthropogenic emissions on the concentrations of sulphur and nitrogen components in air and precipitation in Lithuania, Water Air Soil Pollut. 130(1–4) (2001), pp. 517–522,
http://dx.doi.org/10.1023/A:1013826411072
[16] Y. Gélinas, M. Luccote, and J.P. Schmit, History of the atmospheric deposition of major and trace elements in the industrialized St. Lawrence Valley, Quebec, Canada, Atmos. Environ. 34, 1797–1810 (2000),
http://dx.doi.org/10.1016/S1352-2310(99)00336-2
[17] Å. Rühling and G. Tyler, Changes in atmospheric deposition rates of heavy metals in Sweden, Water Air Soil Pollut. Focus 1, 311–323 (2001),
http://dx.doi.org/10.1023/A:1017584928458
[18] D. Čeburnis, J. Šakalys, K. Armolaitis, D. Valiulis, and K. Kvietkus, In-stack emissions of heavy metals estimated by moss biomonitoring method and snow-pack analysis, Atmos. Environ. 36(9), 1465–1474 (2002),
http://dx.doi.org/10.1016/S1352-2310(01)00577-5
[19] D. Valiulis, D. Čeburnis, J. Šakalys, and K. Kvietkus, Estimation of atmospheric trace metal emissions in Vilnius City, Lithuania, using vertical concentration gradient and road tunnel measurement data, Atmos. Environ. 36(39–40), 6001–6014 (2002),
http://dx.doi.org/10.1016/S1352-2310(02)00764-1
[20] E. Steinnes, T. Berg, and T.E. Sjobakk, Temporal trends in long-range atmospheric transport of heavy metals to Norway, J. Phys. IV France 107, 1271 (2003),
http://dx.doi.org/10.1051/jp4:20030532
[21] C.S.C. Wong, X.D. Li, G. Zhang, S.H. Qi, and X.Z. Peng, Atmospheric deposition of heavy metals in the Pearl River Delta, China, Atmos. Environ. 37, 767–776 (2003),
http://dx.doi.org/10.1016/S1352-2310(02)00929-9
[22] E.C. Krug and D. Winstanley, Comparison of mercury in atmospheric deposition and in Illinois and USA soils, Hydrol. Earth Syst. Sci. 8(1), 98–102 (2004),
http://dx.doi.org/10.5194/hess-8-98-2004
[23] S. Azimi, V. Rocher, S. Garnaud, G. Varrault, and D.R. Thevenot, Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France), Chemosphere 61, 645–651 (2005),
http://dx.doi.org/10.1016/j.chemosphere.2005.03.022
[24] S. Melaku, V. Morris, D. Raghavan, and C. Hosten, Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC, Environ. Pollut. 155, 88–98 (2007),
http://dx.doi.org/10.1016/j.envpol.2007.10.038
[25] J. Šakalys, K. Kvietkus, J. Sucharová, I. Suchara, and D. Valiulis, Changes in total concentrations and assessed background concentrations of heavy metals in moss in Lithuania and the Czech Republic between 1995 and 2005, Chemosphere 76(1), 91–97 (2009),
http://dx.doi.org/10.1016/j.chemosphere.2009.02.009
[26] J.M. Caffrey, W.M. Landing, S.D. Nolek, K.J. Gosnell, S.S. Bagui, and S.C. Bagui, Atmospheric deposition of mercury and major ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability, Atmos. Chem. Phys. 10, 5425–5434 (2010),
http://dx.doi.org/10.5194/acp-10-5425-2010
[27] H. Harmens, D.A. Norris, E. Steinnes, E. Kubin, J. Piispanen, R. Alber, Y. Aleksiayenak, O. Blum, M. Coşkun, M. Dam, L. De Temmerman, J.A. Fernández, M. Frolova, M. Frontasyeva, L. González-Miqueo, K. Grodzińska, Z. Jeran, S. Korzekwa, M. Krmar, K. Kvietkus, S. Leblond, S. Liiv, S.H. Magnússon, B. Maňkovská, R. Pesch, Å. Rühling, J.M. Santamaria, W. Schröder, Z. Spiric, I. Suchara, L. Thöni, V. Urumov, L. Yurukova, and H.G. Zechmeister, Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe, Environ. Pollut. 158, 3144–3156 (2010),
http://dx.doi.org/10.1016/j.envpol.2010.06.039
[28] B.S. Davis and G.F. Birch, Spatial distribution of bulk atmospheric deposition of heavy metals in Metropolitan Sydney, Australia, Water, Air, Soil Pollut. 214, 147–162 (2011),
http://dx.doi.org/10.1007/s11270-010-0411-3
[29] D. Čeburnis, Atmospheric trace metal deposition in Lithuania: methods and estimation, in: Heavy Metals in the Environment: an Integrated Approach, ed. D.A. Lovejoy (Vilnius, Lithuania, 1999), pp. 5–15
[30] J. Šakalys, J. Švedkauskaitė, and D. Valiulis, Estimation of heavy metal washout from the atmosphere, Environ. Chem. Phys, 25(1), 16–22 (2003)
[31] R.R. Socal and F.J. Rohlf, Introduction to Biostatistics (W.H. Freeman & Company, New York, 1987), pp. 322–328,
http://www.amazon.co.uk/Introduction-Biostatistics-Biology-Statistics-Series-Robert/dp/0716718057/