[PDF]     http://dx.doi.org/10.3952/lithjphys.51414

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 313–323 (2011)


DIELECTRIC DISPERSION IN 1,2-DIAMINOPROPANE–DIMETHYLAMINOETHANOL MIXTURES AS A FUNCTION OF COMPOSITION AND TEMPERATURE
P. Undre and P. W. Khirade
Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, India
E-mail: prabhakarundre@yahoo.co.in

Received 23 April 2011; revised 9 November 2011; accepted 1 December 2011

The dielectric dispersion ε' and dielectric loss ε" of binary mixture of 1,2-diaminopropane–dimethylaminoethanol were measured by employing the time domain reflectometry technique over a frequency range from 10 MHz to 20 GHz at 288, 298, 308, and 318 K temperatures. The accuracy in the measurement of the ε' and ε" values obtained from this technique is within ±5%. To evaluate various dielectric parameters, the frequency dependents complex permittivity (ε*(ω) = ε' – iε") data, viz., static permittivity ε0, relaxation time τ, and permittivity at high frequency ε were fitted by the nonlinear least-squares fit method to Debye expression. Temperature dependent ε0, τ, Kirkwood correlation factor g, free energy of activation ΔG, and enthalpy of activation ΔH have been determined and discussed in terms of the effect of –NH2 and –CH3 side-group on molecular dynamics and intermolecular hydrogen bonds. The dielectric behaviour of 1,2-diaminopropane and dimethylaminoethanol liquid molecules and their conformations as well as molecular dynamics of the system can be explored only by comparing the dielectric data of the mixture system with the dielectric data of the individual molecules and their dynamics.
Keywords: dielectric dispersion, dielectric loss, excess parameters, Kirkwood correlation factor, thermodynamic parameters
PACS: 77.22.Ch, 77.22.Gm, 77.84.Nh


DIELEKTRINĖ DISPERSIJA 1,2-DIAMINOPROPANO IR DIMETILAMINOETANOLIO MIŠINIUOSE, PRIKLAUSANTI NUO SUDĖTIES IR TEMPERATŪROS
P. Undre, P. W. Khirade
Babasaheb Ambedkar Marathwada universiteto Fizikos katedra, Aurangabadas, Indija

Dielektrinė dispersija ε' ir dielektriniai nuostoliai ε" dvinariuose 1,2-diaminopropano ir dimetilaminoetanolio mišiniuose matuoti laikinės reflektometrijos metodu 10 MHz – 20 GHz dažnių ruože, esant 288, 298, 308 ir 318 K temperatūrai. Šiuo metodu matuojant ε' ir ε" vertes matavimo paklaida yra ne didesnė nei ±5 %. Siekiant įvertinti įvairius dielektrinius parametrus, nuo laiko priklausančios kompleksinės skvarbos (ε*(ω) = ε'– iε") duomenys, pavyzdžiui, statinė dielektrinė skvarba (ε0), relaksacijos trukmė (τ) ir skvarba esant aukštam dažniui (ε), netiesiniu mažiausių kvadratų metodu aproksimuoti Debajaus formule. Iš nustatytų ε0, τ, Kirkvudo (Kirkwood) koreliacijos daugiklio (g), aktyvacijos laisvosios energijos (ΔG) ir aktyvacijos entalpijos (ΔH) temperatūrių priklausomybių daromos išvados apie –NH2 ir –CH3 šoninių grupių įtaką molekulinei dinamikai ir tarpmolekuliniams vandeniliniams ryšiams. 1,2-diaminopropano ir dimetilaminoetanolio skysčių molekulių ir jų konformacijų dielektrinės savybės bei molekulių dinamika gali būti ištirtos tik palyginus dielektrinius mišinio sistemos duomenis su pavienių molekulių ir jų dinamikos dielektriniais duomenimis.


References / Nuorodos

[1] C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead, and D.M.P. Mingos, Chem. Soc. Rev. 27, 213 (1998),
http://dx.doi.org/10.1039/A827213Z
[2] W. Kuang, and S.O. Nelson, J. Microw. Power Electromagn. Energ. 32, 114 (1997),
http://www.jmpee.org/JMPEE_temp/32-2_bl/JMPEEA-32-2-Pg114.htm
[3] U. Becker and M. Stockhausen, J. Mol. Liq. 81, 89 (1999),
http://dx.doi.org/10.1016/S0167-7322(99)00058-6
[4] R.J. Sengwa, R. Chaudhary, and S.C. Mehrotra, Polymer 43, 1467 (2002),
http://dx.doi.org/10.1016/S0032-3861(01)00662-0
[5] S.M. Puranik, A.C. Kumbharkhane, and S.C. Mehrotra, Indian J. Phys. 67(B), 9 (1993)
[6] F.F. Hanna, Bo Gestblom, and A. Soliman, J. Mol. Liq. 95, 27 (2000),
http://dx.doi.org/10.1016/S0167-7322(01)00284-7
[7] M.J.C. van Gemert, Adv. Mol. Relaxation Processes 6, 123 (1974),
http://dx.doi.org/10.1016/0001-8716(74)80006-4
[8] D. Bertolini, M. Cassettari, S. Salvetti, E. Tombari, and S. Veronesi, Rev. Sci. Instrum. 61, 2416 (1990),
http://dx.doi.org/10.1063/1.1141373
[9] J.G. Berberian and E. King, J. Non-Cryst. Solids 305, 10 (2002),
http://dx.doi.org/10.1016/S0022-3093(02)01082-7
[10] C.E. Shannon, Proc. Inst. Radio Eng. 37, 10 (1949),
http://dx.doi.org/10.1109/JRPROC.1949.232969
[11] H.A. Samulon, Proc. Inst. Radio Eng. 39, 175 (1951),
http://dx.doi.org/10.1109/JRPROC.1951.231438
[12] S. Mashimo, S. Kuwabara, S. Yogihara, and K. Higasi, J. Chem. Phys. 90, 3292 (1989),
http://dx.doi.org/10.1063/1.455883
[13] R.H. Cole, J.G. Berbarian, S. Mashimo, G. Chryssikos, A. Burns, and E. Tombari, J. Appl. Phys. 66, 793 (1989),
http://dx.doi.org/10.1063/1.343499
[14] S. Havriliak and S. Negami, J. Polymer. Sci. C 14, 99 (1966),
http://dx.doi.org/10.1002/polc.5070140111
[15] K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941),
http://dx.doi.org/10.1063/1.1750906
[16] D.W. Davidson and R.H. Cole, J. Chem. Phys. 18, 1484 (1950),
http://dx.doi.org/10.1063/1.1747518
[17] P. Debye, Polar Molecules (The Chemical Catalogue Co., New York, 1929),
http://www.worldcat.org/title/polar-molecules/oclc/686282
[18] S. Kumar, T. Ganesh, S. Krishana, and S.C. Mehrotra, Bull. Pure Appl. Sci. D 20(1), 125 (2001)
[19] P. Undre, S.N. Helambe, S.B. Jagdale, P.W. Khirade, and S.C. Mehrotra, J. Mol. Liq. 137, 147 (2008),
http://dx.doi.org/10.1016/j.molliq.2007.06.004
[20] B.G. Lone, P.B. Undre, S.S. Patil, P.W. Khirade, and S.C. Mehrotra, J. Mol. Liq. 141, 47 (2008),
http://dx.doi.org/10.1016/j.molliq.2008.03.001
[21] A. Volmari and H. Weingärtner, J. Mol. Liq. 98–99, 295 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00334-8
[22] F.J. Arcega, J.M. Fornies-Marquina, A.M. Bottreau, and G. Vicq, An. Fys. 77 B, 28 (1981)
[23] M. Tabellout, P. Lanceleur, J.R. Emery, D. Hayward, and R.A. Pethrick, J. Chem. Soc. Faraday Trans. 86, 1493 (1990),
http://dx.doi.org/10.1039/FT9908601493
[24] J. Lou, T.A. Hatton, and P.E. Laibinis, J. Phys. Chem. A 101, 5262 (1997),
http://dx.doi.org/10.1021/jp970731u
[25] G. Oster and J.G. Kirkwood, J. Chem. Phys. 11, 175 (1943),
http://dx.doi.org/10.1063/1.1723823
[26] A.C. Kumbharkhane, S.M. Puranik, and S.C. Mehrotra, J. Solution Chem. 22, 219 (1993),
http://dx.doi.org/10.1007/BF00649245
[27] G. Moumouzia, D.K. Panopoulos, and G. Ritzoulis, J. Chem. Eng. Data 36, 20 (1991),
http://dx.doi.org/10.1021/je00001a006
[28] N.E. Hill, W. Vaughan, A.H. Price, and M. Davies, Dielectric Properties and Molecular Behaviour (Van Nostrand Reinhold Co., London, 1969),
http://www.amazon.co.uk/Dielectric-Properties-Molecular-Behaviour-Chemistry/dp/0442034113/
[29] S. Glasstone, K.J. Laidler, and H. Eyring, The Theory of Rate Processes (McGraw-Hill Book Co., New York, 1941),
http://www.amazon.co.uk/Processes-Reactions-Viscosity-Diffusion-Electrochemical/dp/B000IXRJ6W/
[30] E.N. Tsurko, T.M. Shihova, and N.V. Bondarev, J. Mol. Liqs. 96–97, 425 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00364-6
[31] J. Lou, A.K. Paravastu, P.E. Laibinis, and T.A. Hatton, J. Phys. Chem. A 101, 9892 (1997),
http://dx.doi.org/10.1021/jp972785+