[PDF] http://dx.doi.org/10.3952/lithjphys.51415
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 370–376 (2011)
TIME-RESOLVED FLUORESCENCE
SPECTROSCOPY OF THE HEART TISSUES
J. Venius a, S. Bagdonas b, E. Žurauskas
c, and R. Rotomskis a,b
a Biomedical Physics
Laboratory of Institute of Oncology, Vilnius University, Baublio
3B, LT-08406 Vilnius, Lithuania
E-mail: jonas.venius@vuoi.lt
b Biophotonics Group
of Laser Research Centre, Vilnius University, Saulėtekio 9,
LT-10222 Vilnius, Lithuania
c Medical Faculty of
Vilnius University, Čiurlionio 21, LT-03100 Vilnius, Lithuania
Received 20 October 2011;
revised 13 December 2011; accepted 13 December 2011
During the heart surgery there is
a possibility to harm the conduction system of the heart (HCS),
which may cause dangerous obstruction of the heart functionality.
The muscular origin makes it complicated to distinguish HCS from
the surrounding tissues; therefore, there is an immense necessity
to visualise HCS during the operation time. Optical methods carry
information about intrinsic properties of the tissue and provide
the unique possibility to study the objects non-invasively. The
experiments were performed on the human heart tissue specimens ex vivo. HCS, myocardium
(MC), and connective tissue (CT) were preliminary marked by a
pathologist and histologically approved after the spectral
measurements. The spectrometer FLS920
(Edinburgh Instruments) was used for steady state and
time-resolved fluorescence registration. Fluorescence was exited
using a 405 nm pulsed laser. Spectral analysis revealed that at
least three fluorophores are responsible for the emission in the
region of 430–550 nm. According to the lifetimes, the fluorescing
constituents in all tissues should be the same. The fractional
components of fluorescence intensity revealed a similar
composition of MC and HCS; however, quantitative differences were
observed between HCS and CT.
Keywords: heart, myocardium,
time-resolved fluorescence
PACS: 87.19.Hh, 87.64.kv,
87.85.Pq
ŠIRDIES
AUDINIŲ
TYRIMAI FLUORESCENCINE LAIKINĖS SKYROS SPEKTROSKOPIJA
J. Venius a, S. Bagdonas b, E. Žurauskas
c, and R. Rotomskis a,b
a Vilniaus universiteto Onkologijos instituto
Biomedicininės fizikos laboratorija, Vilnius, Lietuva
b Vilniaus universiteto Tyrimų centro biofotonikos
grupė, Vilnius, Lietuva
c Vilniaus universiteto Medicinos fakultetas, Vilnius,
Lietuva
Širdies operacijų metu yra
galimybė pažeisti širdies laidžiąją sistemą (ŠLS) ir sukelti
nepataisomus širdies veiklos sutrikimus. Dėl raumeninės ŠLS kilmės
ją sunku vizualiai atskirti nuo aplinkinių širdies audinių, todėl
reikalingas metodas, padėsiantis atskirti ŠLS operacijų metu.
Optiniai metodai yra neinvaziniai tyrimo būdai, kurių metu
registruojami audinio optiniai parametrai, atspindintys kiekybinę
bei kokybinę audinių sudėtį. Eksperimentams naudoti žmogaus
širdies audinio preparatai ex
vivo. ŠLS, jungiamojo audinio (JA) ir miokardo (MK)
lokalizacija preparate buvo preliminariai pažymėta gydytojo
patologo. Po spektroskopinių tyrimų šios vietos buvo
identifikuojamos histologiškai. Spektroskopiniai tyrimai atlikti
spektrofotometru FLS920
(Edinburgh Instruments). Fluorescencija žadinta impulsiniu
lazeriu, kurio spinduliuotės bangos ilgis 405 nm. Iš
spektroskopinių tyrimų nustatyta, kad mažiausiai trys fluoroforai
yra atsakingi už širdies audinių fluorescenciją 430–550 nm
srityje. Užregistruotos gyvavimo trukmės visų audinių yra
panašios, todėl fluoroforai taip pat turėtų būti tie patys.
Įvertinus fluoroforų įnašus į registruojamą fluorescencijos
spektrą nustatyta, kad raumeninės kilmės audinių ŠLS ir MK sudėtis
yra panaši, o tarp ŠLS ir JA stebėti kiekybiniai skirtumai.
References / Nuorodos
[1] F. Leblond, S.C. Davis, P.A. Valdés, and B.W. Pogue,
Pre-clinical whole-body fluorescence imaging: Review of instruments,
methods and applications, J. Photochem. Photobiol. B 98(1), 77–94 (2010),
http://dx.doi.org/10.1016/j.jphotobiol.2009.11.007
[2] N. Ramanujam, Fluorescence spectroscopy of neoplastic and
non-neoplastic tissues, Neoplasia 2(1–2),
89–117 (2000),
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1531869/?report=abstract
[3] T. Glanzmann, J.P. Ballini, H. van den Bergh, and G. Wagnières,
Time-resolved spectrofluorometer for clinical tissue
characterization during endoscopy, Rev. Sci. Instrum. 70(10), 4067–4077 (1999),
http://dx.doi.org/10.1063/1.1150038
[4] G.A. Wagnieres, W.M. Star, and B.C. Wilson, In vivo fluorescence
spectroscopy and imaging for oncological applications, Photochem.
Photobiol. 68(5), 603–632
(1998),
http://dx.doi.org/10.1111/j.1751-1097.1998.tb02521.x
[5] M.-A. Mycek and B.W. Pogue (eds.), Handbook of Biomedical Fluorescence (Marcel
Dekker, New York, 2003),
http://www.crcpress.com/product/isbn/9780824709556
[6] J.R. Lakowicz, Principles of
Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic /
Plenum, New York, 1999),
http://www.worldcat.org/title/principles-of-fluorescence-spectroscopy/oclc/246595757
[7] R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G.
Valentini, Time-resolved fluorescence imaging in biology and
medicine, J. Phys. D 35(9),
R61–R76 (2002),
http://dx.doi.org/10.1088/0022-3727/35/9/201
[8] L. Marcu, Fluorescence lifetime in cardiovascular diagnostics,
J. Biomed. Opt. 15(1),
011106 (2010),
http://dx.doi.org/10.1117/1.3327279
[9] P.R. Moreno and J.E. Muller, Identification of high-risk
atherosclerotic plaques: a survey of spectroscopic methods, Curr.
Opin. Cardiol. 17(6),
638–647 (2002),
http://journals.lww.com/co-cardiology/Citation/2002/11000/Identification_of_high_risk_atherosclerotic.10.aspx
[10] Y. Honda and P.J. Fitzgerald, Frontiers in intravascular
imaging technologies, Circulation 117(15),
2024–2037
(2008),
http://pt.wkhealth.com/pt/re/circ/fulltext.00003017-200804150-00016.htm
[11] R. Richards-Kortum and E. Sevick-Muraca, Quantitative optical
spectroscopy for tissue diagnosis, Annu. Rev. Phys. Chem. 47, 555–606 (1996),
http://dx.doi.org/10.1146/annurev.physchem.47.1.555
[12] T.G. Papazoglou, W.Q. Liu, A. Katsamouris, and C. Fotakis,
Laser-induced fluorescence detection of cardiovascular
atherosclerotic deposits via their natural emission and hypocrellin
(HA) probing, J. Photochem. Photobiol. B 22(2), 139–144 (1994),
http://dx.doi.org/10.1016/1011-1344(93)06960-B
[13] J.J. Baraga, R.P. Rava, P. Taroni, C. Kittrell, M. Fitzmaurice,
and M.S. Feld, Laser induced fluorescence spectroscopy of normal and
atherosclerotic human aorta using 306–310 nm excitation, Lasers
Surg. Med. 10(3), 245–261
(1990),
http://dx.doi.org/10.1002/lsm.1900100305
[14] A.L. Bartorelli, M.B. Leon, Y. Almagor, L.G. Prevosti, J.A.
Swain, C.L. McIntosh, R.F. Neville, M.D. House, and R.F. Bonner, In
vivo human atherosclerotic plaque recognition by laser-excited
fluorescence spectroscopy, J. Am. Coll. Cardiol. 17(6), B160–B168 (1991),
http://dx.doi.org/10.1016/0735-1097(91)90953-7
[15] M. Perk, G.J. Flynn, S. Gulamhusein, Y. Wen, C. Smith, B.
Bathgate, J. Tulip, N.A. Parfrey, and A. Lucas, Laser induced
fluorescence identification of sinoatrial and atrioventricular nodal
conduction tissue, Pacing Clin. Electrophysiol. 16, 1701–1712 (1993),
http://dx.doi.org/10.1111/j.1540-8159.1993.tb01041.x
[16] G.E. Kochiadakis, S.I. Chrysostomakis, M.D. Kalebubas, G.M.
Filippidis, I.G. Zacharakis, and T.G. Papazoglou, The role of
laser-induced fluorescence in myocardial tissue characterization,
Chest 120, 233–239 (2001),
http://dx.doi.org/10.1378/chest.120.1.233
[17] G. Filippidis, G. Zacharakis, G.E. Kochiadakis, S.I.
Chrysostomakis, P.E. Vardas, C. Fotakis, and T.G. Papazoglou, Ex
vivo laser-induced fluorescence measurements of lamb and human
heart tissue, Laser Phys. 13(5),
769–772 (2003),
http://www.maik.ru/cgi-perl/search.pl?type=abstract&name=lasphys&number=5&year=3&page=769
[18] S. Bagdonas, E. Žurauskas, G. Streckytė, and R. Rotomskis,
Spectroscopic studies of the human heart conduction system ex vivo:
Implication for optical visualization, J. Photochem. Photobiol. B 92(2), 128–134 (2008),
http://dx.doi.org/10.1016/j.jphotobiol.2008.05.010
[19] J. Venius, S. Bagdonas, E. Žurauskas, and R. Rotomskis,
Visualization of human heart conduction system by means of
fluorescence spectroscopy, J. Biomed. Opt. 16, 107001 (2011),
http://dx.doi.org/10.1117/1.3631786
[20] A.M.K. Nilsson, D. Heinrich, J. Olajos, and S.
Andersson-Engels, Near infrared diffuse reflection and laser-induced
fluorescence spectroscopy for myocardial tissue characterisation,
Spectrochim. Acta A 53,
1901–1912 (1997),
http://dx.doi.org/10.1016/S1386-1425(97)00106-6
[21] L. Marcu, W.S. Grundfest, and M.C. Fishbein, Time-resolved
laser-induced fluorescence spectroscopy for staging atherosclerotic
lesions, in: Handbook of
Biomedical Fluorescence, eds. M.-A. Mycek and B.W. Pogue
(Marcel Dekker Inc., New York, Basel, 2003) pp. 397–430,
http://www.crcpress.com/product/isbn/9780824709556
[22] J. Venius, D. Labeikytė, E. Žurauskas, V. Strazdaitė, S.
Bagdonas, and R. Rotomskis, Investigation of human heart tissue
extracts by spectroscopic methods, Biologija 3, 53–58 (2006),
http://www.lmaleidykla.lt/ojs/index.php/biologija/article/view/668
[23] S.M. Weis, J.L. Emery, K.D. Becker, D.J. McBride Jr., J.H.
Omens, and A.D. McCulloch, Myocardial mechanics and collagen
structure in the osteogenesis imperfecta murine (oim), Circulation Res. 87, 663–669 (2000),
http://pt.wkhealth.com/pt/re/circres/abstract.00003012-200010130-00008.htm
[24] G.M. Fomovsky, S. Thomopoulos, and J.W. Holmes, Contribution of
extracellular matrix to the mechanical properties of the heart, J.
Mol. Cell. Cardiol. 48(3),
490–496 (2010),
http://dx.doi.org/10.1016/j.yjmcc.2009.08.003
[25] W.G. Cole, D. Chan, A.J. Hickey, and D.E. Wilcken, Collagen
composition of normal and myxomatous human mitral heart valves,
Biochem. J. 219(2), 451–460
(1984),
http://www.biochemj.org/bj/219/bj2190451.htm