[PDF]
http://dx.doi.org/10.3952/lithjphys.52106
Open access article /
Atviros prieigos straipsnis
Lith.
J. Phys. 52, 55–58
(2012)
PHOTODIODE
BASED PROTOTYPE DEVICE
FOR SKIN AUTOFLUORESCENCE PHOTOBLEACHING DIAGNOSTICS IN
DERMATOLOGY
I. Ferulovaa, A. Riebaa, J. Lesinsa,
A. Berzinab, A. Lihacheva, and J. Spigulisa
aInstitute of Atomic
Physics and Spectroscopy, University of Latvia, Raina 19,
LV-1586 Riga,
Latvia
E-mail: inesa.ferulova@gmail.com
bLaserplastic Clinic,
Baznīcas 31, LV-1010 Riga, Latvia
Received 27 August 2011; revised 1 February 2012; accepted 1 March
2012
A
new portable non-invasive prototype
device for skin autofluorescence photobleaching measurements under
a
532 nm laser excitation has been developed and clinically tested.
The
details of the equipment are described along with some measurement
results illustrating the potentiality of the technology. Overall,
51
malformations of human skin were investigated by the device.
Keywords: skin,
autofluorescence, photobleaching, prototype device, photodiode
PACS: 87.64.kv
FOTODIODINIO
ĮTAISO
PROTOTIPAS ODOS AUTOFLUORESCENCINEI FOTOIŠBALINIMO DIAGNOSTIKAI
DERMATOLOGIJOJE
I.
Ferulovaa, A. Riebaa,
J. Lesinsa, A. Berzinab, A. Lihacheva,
J. Spigulisa
aLatvijos
universiteto
Atominės fizikos ir spektroskopijos institutas, Ryga, Latvija
bLazerinės plastikos
klinika, Ryga, Latvija
Sukurtas
ir kliniškai išbandytas
naujas prototipinis nešiojamas neinvazinis įrenginys, skirtas odos
autofluorescenciniam fotoišbalinimui matuoti, naudojant 532 nm
lazerio
žadinimą. Pateiktas smulkus įrangos aprašas ir kai kurie matavimo
rezultatai, iliustruojantys šio būdo galimybes. Iš viso šiuo
prietaisu
ištirtas 51 žmogaus odos probleminis darinys.
References
/ Nuorodos
[1] Laser
Surgery and Medicine: Principles and Practice,
ed. C.A. Puliafito (John Wiley & Sons Inc., New
York, 1996),
http://www.amazon.co.uk/Laser-Surgery-Medicine-Principles-Practice/dp/0471120707/
[2] Y.P. Sinichkin,
N. Kollias, G.I. Zonios, S.R. Utz, and V.V. Tuchin,
Reflectance and fluorescence spectroscopy of human skin in
vivo, in: Handbook
of Optical Biomedical Diagnostics,
ed. V.V. Tuchin (SPIE Press, 2002) pp. 725–785,
http://www.amazon.co.uk/Handbook-Optical-Biomedical-Diagnostics-Monograph/dp/0819442380/
[3] E.V. Salomatina
and A.B. Pravdin, Fluorescence dynamics of human
epidermis (ex
vivo) and
skin (in
vivo), Proc.
SPIE 5068, 405–410 (2003),
http://dx.doi.org/10.1117/12.518859
[4] A. Lihachev and
J. Spigulis, Skin autofluorescence fading at
405/532 nm laser excitation, in: 2006
Northern
Optics
Conference
Proceedings,
pp. 63–65,
http://dx.doi.org/10.1109/NO.2006.348375
[5] A. Lihachev, J.
Spigulis, and R. Erts, Imaging of laser-excited
tissue autofluorescence bleaching rates, Appl. Opt. 48(10), D163–D168
(2009),
http://dx.doi.org/10.1364/AO.48.00D163
[6] A.A.
Stratonnikov, V.S. Polikarpov, and V.B. Loschenov, Photobleaching of
endogenous fluorochroms in tissues in vivo during laser irradiation,
Proc. SPIE 4241, 13–24
(2001),
http://dx.doi.org/10.1117/12.431555
[7] A. Lihachev, J.
Lesinsh, D. Jakovels, and J. Spigulis, Low power
cw-laser signatures on skin, Quant. Electron. 40(12), 1077–1080 (2010),
http://dx.doi.org/10.1070/QE2010v040n12ABEH014470