[PDF]     http://dx.doi.org/10.3952/lithjphys.52108

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 5054 (2012)


RGB IMAGING DEVICE FOR MAPPING AND MONITORING OF HEMOGLOBIN DISTRIBUTION IN SKIN
D. Jakovels and J. Spigulis
Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina 19, LV-1586 Riga, Latvia
E-mail: dainis.jakovels@lu.lv

Received 19 August 2011; revised 13 February 2012; accepted 1 March 2012

A prototype RGB imaging device for the mapping and monitoring of hemoglobin distribution in skin was designed and tested. The device was examined for monitoring hemoglobin concentration changes during specific  provocations: arterial/venous occlusions and heat test. Besides, hemoglobin distribution maps of rosacea on a cheek were obtained.
Keywords: RGB imaging, hemoglobin, skin
PACS: 42.30.Va, 42.87.-d


TRISPALVIO (RGB) VAIZDINIMO ĮRENGINYS, SKIRTAS NUSTATYTI IR STEBĖTI HEMOGLOBINO PASISKIRSTYMĄ ODOJE
D. Jakovels, J. Spigulis
Latvijos universiteto Atominės fizikos ir spektroskopijos institutas, Ryga, Latvija

Sukurtas ir išbandytas prototipinis trispalvio (angl. red-green-blue, RGB) vaizdinimo įrenginys, skirtas nustatyti ir stebėti hemoglobino pasiskirstymą odoje. Ištirta, kaip prietaisu galima stebėti hemoglobino koncentracijos pokyčius, kai yra konkrečios juos sukeliančios priežastys – užsikimšę arterijos ar venos bei kraujagysles praplečiantis šiluminis testas. Be to, gauti hemoglobino pasiskirstymo atvaizdai skruosto rozacėjos atveju.


References / Nuorodos

[1] S.L. Jacques, R. Samatham, and N. Choudhury, Rapid spectral analysis for spectral imaging, Biomed. Opt. Express 1, 157–164 (2010),
http://dx.doi.org/10.1364/BOE.1.000157
[2] D. Jakovels and J. Spigulis, 2-D mapping of skin chromophores in the spectral range 500–700 nm, J. Biophoton. 3(3), 125–129 (2010),
http://dx.doi.org/10.1002/jbio.200910069
[3] I. Nishidate, K. Sasaoka, T. Yuasa, K. Niizeki, T. Maeda, and Y. Aizu, Visualizing of skin chromophore concentrations by use of RGB images, Opt. Lett. 33, 2263–2265 (2008),
http://dx.doi.org/10.1364/OL.33.002263
[4] J. O’Doherty, P. McNamara, N.T. Clancy,  J.G. Enfield, and M.J. Leahy, Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration, J. Biomed. Opt. 14, 034025 (2009),
http://dx.doi.org/10.1117/1.3149863
[5] D. Jakovels, J. Spigulis, and L. Rogule, RGB mapping of hemoglobin distribution in skin, Proc. SPIE 8087, 80872B (2011),
http://dx.doi.org/10.1117/12.889665
[6] IDS Imaging Development Systems GmbH, USB 2 UI-1221LE-C specification, IDS Web Page, 1 March 2012:
http://www.ids-imaging.com/frontend/products.php?cam_id=12
[7] S.G. Demos and R.R. Alfano, Optical polarization imaging, Appl. Opt. 36(1), 150–155 (1997),
http://dx.doi.org/10.1364/AO.36.000150
[8] S. Prahl, Tabulated Molar Extinction Coefficient for Hemoglobin in Water, Oregon Medical Laser Center Web Page, 1 March 2012:
http://omlc.ogi.edu/spectra/hemoglobin/summary.html
[9] A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm, J. Phys. D: Appl. Phys. 38(15), 2543 (2005),
http://dx.doi.org/10.1088/0022-3727/38/15/004