[PDF]
http://dx.doi.org/10.3952/lithjphys.52108
Open access article /
Atviros prieigos straipsnis
Lith.
J. Phys. 52, 50–54
(2012)
RGB
IMAGING DEVICE FOR MAPPING AND
MONITORING OF HEMOGLOBIN DISTRIBUTION IN SKIN
D. Jakovels and J. Spigulis
Biophotonics Laboratory,
Institute of
Atomic Physics and Spectroscopy, University of Latvia, Raina 19,
LV-1586 Riga, Latvia
E-mail: dainis.jakovels@lu.lv
Received 19 August 2011; revised 13 February 2012; accepted 1
March 2012
A
prototype RGB imaging device for
the mapping and monitoring of hemoglobin distribution in skin was
designed and tested. The device was examined for monitoring
hemoglobin
concentration changes during specific provocations:
arterial/venous occlusions and heat test. Besides, hemoglobin
distribution maps of rosacea on a cheek were obtained.
Keywords: RGB imaging,
hemoglobin, skin
PACS: 42.30.Va, 42.87.-d
TRISPALVIO
(RGB) VAIZDINIMO
ĮRENGINYS, SKIRTAS NUSTATYTI IR STEBĖTI HEMOGLOBINO
PASISKIRSTYMĄ ODOJE
D. Jakovels, J. Spigulis
Latvijos universiteto Atominės
fizikos ir spektroskopijos institutas, Ryga, Latvija
Sukurtas
ir išbandytas prototipinis
trispalvio (angl.
red-green-blue, RGB) vaizdinimo įrenginys, skirtas nustatyti ir
stebėti
hemoglobino pasiskirstymą odoje. Ištirta, kaip prietaisu galima
stebėti
hemoglobino koncentracijos pokyčius, kai yra konkrečios juos
sukeliančios priežastys – užsikimšę arterijos ar venos bei
kraujagysles
praplečiantis šiluminis testas. Be to, gauti hemoglobino
pasiskirstymo
atvaizdai skruosto rozacėjos atveju.
References
/ Nuorodos
[1] S.L. Jacques,
R. Samatham, and N. Choudhury, Rapid spectral
analysis for spectral imaging, Biomed. Opt. Express 1, 157–164 (2010),
http://dx.doi.org/10.1364/BOE.1.000157
[2] D. Jakovels and
J. Spigulis, 2-D mapping of skin chromophores in
the spectral range 500–700 nm, J. Biophoton. 3(3), 125–129 (2010),
http://dx.doi.org/10.1002/jbio.200910069
[3] I. Nishidate,
K. Sasaoka, T. Yuasa, K. Niizeki, T.
Maeda, and Y. Aizu, Visualizing of skin
chromophore concentrations by use of RGB images, Opt. Lett. 33, 2263–2265 (2008),
http://dx.doi.org/10.1364/OL.33.002263
[4] J. O’Doherty,
P. McNamara, N.T. Clancy, J.G.
Enfield, and M.J. Leahy, Comparison of
instruments for investigation of microcirculatory blood flow and red
blood cell concentration, J. Biomed. Opt. 14, 034025 (2009),
http://dx.doi.org/10.1117/1.3149863
[5] D. Jakovels, J.
Spigulis, and L. Rogule, RGB mapping of hemoglobin
distribution in skin, Proc. SPIE 8087,
80872B (2011),
http://dx.doi.org/10.1117/12.889665
[6] IDS Imaging
Development Systems GmbH, USB 2 UI-1221LE-C
specification, IDS Web Page, 1 March 2012:
http://www.ids-imaging.com/frontend/products.php?cam_id=12
[7] S.G. Demos and
R.R. Alfano, Optical polarization imaging, Appl.
Opt. 36(1), 150–155 (1997),
http://dx.doi.org/10.1364/AO.36.000150
[8] S. Prahl,
Tabulated Molar Extinction Coefficient for Hemoglobin in
Water, Oregon Medical Laser Center Web Page, 1 March 2012:
http://omlc.ogi.edu/spectra/hemoglobin/summary.html
[9] A.N. Bashkatov,
E.A. Genina, V.I. Kochubey, and V.V.
Tuchin, Optical properties of human skin, subcutaneous and mucous
tissues in the wavelength range from 400 to 2000 nm, J. Phys. D:
Appl.
Phys. 38(15), 2543 (2005),
http://dx.doi.org/10.1088/0022-3727/38/15/004