[PDF]
http://dx.doi.org/10.3952/lithjphys.52109
Open access article /
Atviros prieigos straipsnis
Lith.
J. Phys. 52, 59–62
(2012)
MULTI-SPECTRAL
OPTOELECTRONIC
DEVICE FOR SKIN MICROCIRCULATION ANALYSIS
L. Asare, E. Kviesis-Kipge, M. Ozols, J. Spigulis, and R. Erts
Institute of Atomic Physics and
Spectroscopy, University of Latvia, Raina 19, LV-1586 Riga,
Latvia
E-mail: lasma.asare@yahoo.com
Received 5 September 2011; revised 17 February 2012; accepted 1
March
2012
The
developed optical fiber laser
diode biosensor comprises one multi-wavelength laser diode (405,
660
and 780 nm) and a single photodiode with multi-channel signal
output
processing and a built-in Li-ion accumulator. Special software was
created for visualisation and measuring of multi-spectral
photoplethysmography signals. The prototype device was tested on
11
healthy subjects.
Keywords:
photoplethysmography,
biosensor, multi-wavelength
PACS: 42.62.Be, 47.63.Jd,
85.60.Jb, 87.19.U-
ODOS
MIKROAPYTAKOS ANALIZĖS
DAUGIASPEKTRIS OPTOELEKTRONINIS PRIETAISAS
L. Asare, E. Kviesis-Kipge, M. Ozols, J. Spigulis, R. Erts
Latvijos universiteto Atominės
fizikos ir spektroskopijos institutas, Ryga, Latvija
Sukurtas
optinio šviesolaidžio
lazerinis diodinis biojutiklis, sudarytas iš vieno daugiabangio
lazerinio diodo (405, 660 ir 780 nm) ir atskiro šviesos diodo su
daugiakanaliu išėjimo signalo apdorojimu ir įmontuotu Li jonų
akumuliatoriumi. Sukurta speciali programinė įranga daugiaspektrės
fotopletizmografijos signalams vaizdinti ir matuoti. Prietaiso
prototipas išbandytas su 11 sveikų asmenų.
References
/ Nuorodos
[1] J. Allen,
Photoplethysmography and its application in clinical
physiological measurement, Physiol. Meas. 28, R1–R39 (2007),
http://dx.doi.org/10.1088/0967-3334/28/3/R01
[2] H. Ugnell and
P.A. Öberg, Time variable photoplethysmographic
signal: its dependence on light wavelength and sample volume, Proc.
SPIE 2331, 89–97 (1995),
http://dx.doi.org/10.1117/12.201233
[3] H.H. Asada, P.
Shaltis, A. Reisner, S. Rhee, and R.C. Hutchinson,
Mobile monitoring with wearable photoplethysmographic biosensors,
IEEE
Eng. Med. Biol. Mag. 22,
28–40
(2003),
http://dx.doi.org/10.1109/MEMB.2003.1213624
[4]
http://www.ilo.org/safework_bookshelf/english?content&nd=857170571
[5] L. Gailite, J.
Spigulis, and A. Lihachev, Multilaser
photoplethysmography technique, Lasers Med. Sci. 23, 189–193 (2008),
http://dx.doi.org/10.1007/s10103-007-0471-9
[6] R. Stojanovic
and D. Karadaglic, A LED–LED-based
photoplethysmography sensor, Physiol. Meas. 28, N19–N27 (2007),
http://dx.doi.org/10.1088/0967-3334/28/6/N01
[7] E.
Kviesis-Kipge, A new technique for optical detection of
biosignals, Latv. J. Phys. Tech. Sci. 46(3),
64–69 (2009)
[8] L. Asare, E.
Kviesis-Kipge, U. Rubins, O. Rubenis, and J. Spigulis,
Multi-spectral photoplethysmography technique for parallel
monitoring
of pulse shapes at different tissue depths, Proc. SPIE 8087, 80872E (2011),
http://dx.doi.org/10.1117/12.889954